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The nuclear–cytoskeleton connection influences many aspects

of cellular architecture, including nuclear positioning, the

stiffness of the global cytoskeleton, and mechanotransduction.

Central to all of these processes is the assembly and function of

conserved SUN–KASH bridges, or LINC complexes, that span

the nuclear envelope. Recent studies provide details of the

higher order assembly and targeting of SUN proteins to the

inner nuclear membrane. Structural studies characterize SUN–

KASH interactions that form the central link of the nuclear-

envelope bridge. KASH proteins at the outer nuclear membrane

link the nuclear envelope to the cytoskeleton where forces are

generated to move nuclei. Significantly, SUN proteins were

recently shown to contribute to the progression of

laminopathies.
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Introduction
How the nucleus interacts with the cytoskeleton is central

to positioning the nucleus, which functions in a wide

variety of cellular processes including nuclear migration,

nuclear anchorage, centrosome attachment to the

nucleus, and mechanotransduction [1–4]. The machinery

that positions nuclei also plays important functions in

DNA repair and pairing of chromosomes in meiosis,

which will not be discussed here [5–10]. A conserved

bridge consisting of SUN and KASH proteins spans both

membranes of the nuclear envelope [11–13] and is often

referred to as the LINC complex because it is the linker

of the nucleoskeleton to the cytoskeleton [14,15,16��]. To

form the bridge, SUN proteins in the inner nuclear

membrane interact with lamins in the nucleoplasm and

KASH proteins in the perinuclear space (Figure 1). KASH

proteins are then recruited specifically to the outer

nuclear membrane where they are positioned to interact
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with a wide variety of cytoskeletal components [11].

Mutations in mammalian SUN and KASH proteins lead

to developmental defects in neurogenesis, gametogen-

esis, myogenesis, cilliogenesis, and retina formation and

contribute to human diseases, including muscular dystro-

phy, ataxia, Progeria, lissencephaly, and cancer

[11,17,18,19,20��].

The rapidly growing field of nuclear–cytoskeletal inter-

actions has recently been reviewed [11–13]. Here, with

apologies to the rest of the field, we focus on five major

findings reported over the past two years. The first step of

building the SUN–KASH bridge is recruiting SUN

proteins to the inner nuclear membrane. Surprisingly,

trafficking SUN proteins to the inner nuclear membrane

involves multiple, partially redundant mechanisms

[21�,22��,23��]. The second step of bridge building, the

formation of a physical interaction between SUN and

KASH domains, was recently beautifully elucidated at a

structural level [16��]. Once KASH proteins are recruited

to the surface of the nucleus, they interact with micro-

tubule motors or flowing actin filaments to move nuclei

[24,25,26��,27��]. A fourth group of studies demonstrated

that SUN–KASH bridges transfer forces across the

nuclear envelope [3,28�]. Finally, our understanding of

the role of SUN proteins in disease has been advanced

with the surprising finding that the absence of Sun1

suppresses disease pathologies associated with defects

in lamin A [20��]. These exciting studies not only advance

our understanding of how SUN–KASH bridges are

assembled and function, but also open exciting avenues

for continued research.

Building SUN–KASH bridges 1: targeting SUN
proteins to the inner nuclear membrane
To assemble the bridge, SUN proteins must first be

targeted specifically to the inner nuclear membrane.

Upwards of 100 proteins are specifically targeted to the

inner nuclear membrane using a variety of different

mechanisms [29]. Here we focus on recent reports elu-

cidating mechanisms used to target SUN proteins,

specifically mammalian Sun1 and Sun2, Caenorhabditis
elegans UNC-84, and Saccharomyces cerevisiae Mps3 to

the inner nuclear membrane [21�,22��,23��,30�]. These

reports show that SUN proteins are first actively trafficked

from the ER to the nuclear envelope and then shuttled

across nuclear pores by multiple mechanisms. Finally,

SUN proteins are retained at the inner nuclear membrane

through interactions with the nuclear lamina, chromatin,

and/or KASH proteins (Figure 2).
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Figure 1
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SUN and KASH proteins span the nuclear envelope. A trimer of SUN

proteins (light blue, dark blue, and gray) forms at the inner nuclear

membrane (INM). SUN proteins interact with the KASH domain (orange)

in the perinuclear space. Only a single KASH protein is shown for

simplicity. KASH proteins cross the outer nuclear membrane (ONM) and

extend into the cytoplasm to interact with the cytoskeleton. One class of

KASH proteins (yellow) recruit microtubule motors dynein and kinesin to

the surface of the nucleus, while a second class (light green) tethers

nuclei to actin filaments.
The first step of trafficking to the inner nuclear mem-

brane is to actively move SUN proteins from the periph-

eral ER toward the nuclear envelope, which employs a

variable combination of signals (Figure 2). Both Sun2 and

UNC-84 contain a predicted inner nuclear membrane-

sorting motif (INM-SM). INM-SMs are found next to the

cytoplasmic end of a transmembrane span and bind a

truncated, membrane-associated importin a during trans-

lation to facilitate transport toward the nuclear envelope

[31,32]. A novel SUN-Nuclear Envelope Localization

Signal (SUN-NELS) is conserved between UNC-84

and Sun1; SUN-NELS binding partners have not been

identified [22��]. Mutating the INM-SM or the SUN-

NELS in UNC-84 caused a significant delay in targeting

to the nuclear envelope [22��]. Likewise, a short region

containing the SUN-NELS in Sun1 participates in local-

ization [33��]. An additional player in SUN trafficking is

ATP, as depletion of ATP disrupted the mobility of Sun2

in the ER [30�]. Finally, a Golgi retrieval signal further

ensures that SUN proteins get to the correct compart-

ment. Mutating the Golgi retrieval signal in Sun2 caused

it to mislocalize [23��]. Together, these data suggest that

multiple mechanisms are required for presorting and

trafficking SUN proteins toward the nuclear envelope.
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These signals likely work together, as multiple mutations

worsened the trafficking defects [22��,23��].

Once enriched at the nuclear envelope, multiple mech-

anisms mediate the translocation of SUN proteins across

the nuclear pore (Figure 2). The classical nuclear local-

ization signal (cNLS) in Sun2 binds importins in a Ran-

dependent manner and contributes to Sun2 localization

[23��]. ATP may also play a role in translocation across the

nuclear pore [30�]. The putative cNLSs in UNC-84

function in part redundantly with the SUN-NELS and

INM-SM; only when all three signals are mutated does

UNC-84 completely fail to localize to the inner nuclear

membrane [22��]. Independently of cNLSs, Mps3 uses its

N-terminal acidic domain to interact with the histone

variant H2A.Z to transverse the nuclear pore complex

[21�].

The final step of targeting SUN proteins is to retain them

at the inner nuclear membrane (Figure 2). SUN proteins

interact with multiple proteins in the nucleoskeleton,

including lamins [34], which are strong candidates to

retain SUN proteins at the inner nuclear membrane.

An additional model postulates that the conserved

SUN domain within the lumen aids in retention, pre-

sumably by forming nuclear envelope bridges [16��,23��].

Building SUN–KASH bridges 2: the interaction
between SUN and KASH proteins in the
perinuclear space
A direct interaction between SUN and KASH domains in

the perinuclear space forms the central link of the nuclear

envelope bridge [11]. Until recently, the oligomerization

state of SUN proteins and the molecular interaction faces

between SUN and KASH domains were not well under-

stood [35,36]. Two new structural studies show that SUN

domains assemble into clover-like trimers mediated by a

triple-helix bundle of short, coiled regions at the amino

end of the conserved SUN domain [16��,37].

The most significant recent contribution to the under-

standing of the SUN–KASH bridge came when Sosa et al.
[16��] presented crystal structures of the interactions

between human Sun2 and the KASH domains of

Nesprin-1/Nesprin-2 (Figure 3). They characterized

extensive interaction faces among the three SUN proto-

mers that create three independent KASH-binding sites.

The C-terminal four residues of the KASH domain are

buried in a pocket within the surface of one SUN pro-

tomer, which is supported by in vitro studies showing that

the addition of a single alanine to the end of the KASH

domain disrupts binding [16��]. KASH domains then

extend for 13 residues across a cleft formed by two

SUN protomers and are clamped in place by a protruding

b-sheet, or ‘KASH-lid’, from the first SUN protomer

overlapping with its neighbor. Finally, the next six resi-

dues interact with the surface of the second SUN
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Three steps to targeting SUN proteins to the inner nuclear membrane (INM). First, signals including INM-SM and SUN-NELS recruit partners to move

SUN proteins from the peripheral ER to the outer nuclear membrane (ONM). ATP and the Golgi retrieval signal (4R) also participate in this first step.

Second, importins (red), ATP, and/or histone H2A.Z (pink) help shuttle SUN proteins across the nuclear pore. Finally, SUN proteins are retained at the

INM by interacting with lamins and forming bridges with KASH proteins.
protomer. This interaction is further stabilized by the

formation of an intermolecular disulfide bond between a

cysteine 23 residues from the C-terminus of the KASH

domain and a conserved cysteine on the surface of the

SUN protein. Disulfide bond formation is dispensable for

SUN–KASH binding, but is proposed to help withstand

the forces transmitted across the bridge during nuclear

migration or chromosome movement [16��]. The remain-

der of the KASH domain extends away from the SUN

trimer toward the outer nuclear membrane. This high-

resolution view of SUN–KASH interactions gives us the

first clear picture into how they tightly interact to perform

their many functions.

KASH proteins interact with microtubule
motors or actin filaments to move nuclei
Once KASH proteins are recruited to the outer nuclear

membrane, their cytoplasmic domains are free to mediate

interactions between the nucleus and the cytoskeleton

[11]. Two mechanisms for using KASH proteins to move

nuclei were recently elucidated. In one mechanism,

KASH proteins, including C. elegans UNC-83, Drosophila
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Klarsicht, and mammalian Nesprin-4 function as nuclear-

specific adaptors to recruit motor proteins dynein and/or

kinesin-1 to the surface of the nucleus [11,24,26��]. In

these three cases, kinesin-1 provides the major forces to

move nuclei along polarized microtubules. Live imaging

of C. elegans hypodermal nuclear migrations showed that

kinesin-1 moves nuclei forward, while dynein is required

to roll nuclei or to move them in the reverse direction to

resolve cytoplasmic roadblocks [26��]. In other systems,

such as the C. elegans germline and early embryo, dynein is

recruited to the nuclear envelope by the KASH protein

ZYG-12 to position nuclei or to mediate meiotic chromo-

some movements and pairing [9,38]. Thus, the relative

roles of the minus-end-directed microtubule-motor

dynein versus the plus-end-directed motor kinesin-1

vary.

The second mechanism for moving nuclei involves

KASH proteins tethering nuclei to a moving actin net-

work. In polarizing fibroblasts, actin filaments flow away

from the wound edge. The KASH proteins Nesprin-1/

Nesprin-2 connect nuclei to the moving filaments [27��].
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The crystal structure of the interaction between the SUN and KASH domains of human Sun2 and Nesprin-2. A surface representation of the three SUN

protomers (shades of blue) and the backbone of the KASH peptide (orange) are shown from two angles.

Adapted, with permission, from [16].
Nesprin-1/Nesprin-2, orthologs of C. elegans ANC-1 and

Drosophila MSP-300, function to tether the outer nuclear

membrane to actin [11]. In addition to Nesprins, SUN

proteins, the inner nuclear membrane protein Samp1, and

lamin also assemble into transmembrane actin-associated

nuclear (TAN) lines to complete the connection between

nuclei and moving actin filaments [27��,39,40]. Together,

these two examples demonstrate the variety of different

mechanisms KASH proteins use to generate forces at the

nuclear envelope.

The role of SUN–KASH bridges in
mechanotransduction of forces across the
nuclear envelope
Mechanotransduction is the translation of extracellular

mechanical stimuli into chemical signals. Some mech-

anical stimuli are propagated through a pre-stressed

cytoskeleton all the way to the nucleus [41]. SUN and

KASH proteins have been hypothesized to propagate

mechanical signals to the nucleus [42]. In support of this

hypothesis, disruption of KASH proteins causes a loss of

cellular mechanical stiffness, suggesting that nuclear

envelope bridges organize the global cytoskeleton

[43]. Two recent reports provide further evidence for

the role of KASH proteins in mechanotransduction. First,

a microneedle was used to physically pull on the cyto-

plasm and the displacement of the nucleus was used to

approximate the strength of the mechanical coupling of
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the nucleus to the cytoskeleton [3�]. The disruption of

SUN or KASH proteins by dominant negative constructs

reduced nuclear deformation, impaired intracellular

force transduction, and affected cell migration and polar-

ization, demonstrating that SUN–KASH bridges form a

connection between the cytoskeleton and nucleus that is

critical for intracellular force transmission [3�]. The sec-

ond report implicates the KASH protein Nesprin-3,

which links intermediate filaments to the nucleus, in

mechanotransduction [28�]. In the presence of siRNA

against Nesprin-3, cultured endothelial cells failed to

polarize or migrate upon the induction of flow [28�].
Together, these reports strongly support the hypothesis

that SUN and KASH bridges function in mechanotrans-

duction.

SUN–KASH bridges in human disease
Mutations in SUN and KASH proteins are thought to

contribute to a wide variety of diseases, including cancer

[11]. Here we focus on recent reports about the role of

SUN proteins in laminopathies, a spectrum of diseases

caused by mutations in lamins [44]. SUN and KASH

proteins have long been postulated to contribute to the

pathology of laminopathies [19,33��,45]. A surprising

report showed that knockout of mouse Sun1 reduced

the severity of phenotypes associated with mutations in

lamin A in mouse models for Emery-Dreifuss Muscular

Dystrophy or Hutchinson-Gilford Progeria Syndrome
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[20��]. Sun1, lamin A double mutant mice lived longer,

grew larger, and had fewer defects in bone structure,

muscle formation, senescence, heterochromatin marks,

and the shape of nuclei than lamin A single mutant mice

[20��]. Similar results were observed in cells from Progeria

patients treated with siRNA against Sun1 [20��]. Thus,

Sun1 enhances the defects associated with lamin A

mutations in disease.

The mechanisms of how SUN proteins contribute to

laminopathies are unknown, but multiple models have

been proposed. Mutations in lamin A lead to less stiff

nuclei [46,47], suggesting that the presence of Sun1 could

lead to more pulling forces on the nuclear envelope and

therefore more damage to a weakened nucleus. The other

favored model is that mutations in lamins, and perhaps

SUN proteins, lead to altered transcription patterns of

important developmental factors [47,48]. An alternative

model is that mutations in lamin A lead to overexpression

of Sun1 and accumulation in the Golgi, which leads to

toxicity [20��]. The newest model is that overexpression

of Sun1 in lamin A mutants causes toxicity by inducing

hyperactivity in the DNA damage response [5,10].

Conclusions
Great progress has been made in the past two years in

understanding how the LINC complex of SUN and

KASH proteins is assembled, how it functions in nuclear

migration, and how it participates in mechanotransduc-

tion. It has also become clear that LINC complexes play

important roles in human disease. Despite this progress,

many questions remain. Many players in SUN trafficking

remain to be identified, including those utilizing ATP and

proteins that bind the SUN-NELS. We do not under-

stand when or where SUN multimerization and KASH

binding occurs, how complexes are rearranged during

important developmental switches, or how they partici-

pate in mechanotransduction. Finally, future exper-

iments are required to determine the relative

contributions of each of the proposed models for SUN

and KASH proteins in disease progression. Continued

research by basic and clinical scientists should translate

these findings on nuclear-cytoskeletal interactions into

the treatment of human disease.
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