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Abstract

The nuclear envelope links the cytoskeleton to structural components
of the nucleus. It functions to coordinate nuclear migration and anchor-
age, organize chromatin, and aid meiotic chromosome pairing. Forces
generated by the cytoskeleton are transferred across the nuclear enve-
lope to the nuclear lamina through a nuclear-envelope bridge consist-
ing of SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1 and
Syne/Nesprin homology) proteins. Some KASH-SUN combinations
connect microtubules, centrosomes, actin filaments, or intermediate fil-
aments to the surface of the nucleus. Other combinations are used in cell
cycle control, nuclear import, or apoptosis. Interactions between the cy-
toskeleton and the nucleus also affect global cytoskeleton organization.
SUN and KASH proteins were identified through genetic screens for
mispositioned nuclei in model organisms. Knockouts of SUN or KASH
proteins disrupt neurological and muscular development in mice. De-
fects in SUN and KASH proteins have been linked to human dis-
eases including muscular dystrophy, ataxia, progeria, lissencephaly, and
cancer.
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INTRODUCTION
The nuclear envelope is a specialized exten-
sion of the endoplasmic reticulum (ER) that
compartmentalizes the genome. It also pro-
vides physical rigidity to the nucleus, organizes
chromatin, functions in meiotic chromosome
pairing, and positions the nucleus within the
cell. Interactions between the cytoskeleton and
the nuclear envelope are central to all of these
functions. The same molecular mechanisms are
used in these processes to transfer forces gener-
ated in the cytoskeleton to the structural com-
ponents inside the nucleus. Here we review how

the nucleus interacts with the cytoskeleton, how
forces are transferred across the nuclear enve-
lope, and how these processes relate to human
disease.

The nuclear envelope consists of two par-
allel membranes, the inner nuclear mem-
brane (INM) and outer nuclear membrane
(ONM), that are contiguous at the nuclear pore
(Figure 1a). The ONM is also contiguous
with the ER (reviewed in Franke et al. 1981).
The membranes of the nuclear envelope are
supported by the nuclear lamina that imme-
diately underlies the INM. In metazoans, the
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Nuclear-envelope
bridge: a complex of
SUN proteins at the
INM and KASH
proteins at the ONM
that transfer forces
generated in the
cytoplasm to the
nuclear lamina

LINC: linker of
nucleoskeleton and
cytoskeleton

lamina consists of membrane proteins, the
intermediate filament lamin, and proteins as-
sociated with chromatin (reviewed in Gruen-
baum et al. 2005). To form a nuclear-envelope
bridge, membrane proteins are trafficked from
the ER membrane either to the INM to interact
with the lamina, or to the ONM to interact with
the cytoskeleton. To complete the bridge, INM
and ONM proteins interact with each other
in the perinuclear space. The current KASH-
SUN nuclear-envelope bridging model, also re-
ferred to as the linker of nucleoskeleton and cy-
toskeleton (LINC) complex model, posits that
SUN (Sad1 and UNC-84) proteins in the INM
interact with KASH (Klarsicht, ANC-1, and
Syne/Nesprin homology) proteins of the ONM
to span the nuclear envelope (Figure 1b).

DISCOVERY OF KASH
AND SUN PROTEINS AND
THE FORMATION OF THE
NUCLEAR-ENVELOPE BRIDGE

Discovery of SUN Proteins

Our current understanding of the molecu-
lar mechanisms of the SUN-KASH nuclear-
envelope bridge is based on characterizations
of genetic mutants in Caenorhabditis elegans
and Drosophila with mispositioned nuclei (re-
viewed in Starr & Fischer 2005, Starr & Han
2005, Wilhelmsen et al. 2006). SUN proteins
were discovered by molecular analysis of C.
elegans unc-84. Alleles of unc-84 were orig-
inally isolated because of their defects in P
cell nuclear migration, which results in miss-
ing neurons and vulval cells, leading to unco-
ordinated and egg-laying defective phenotypes
(Figure 2a, Horvitz & Sulston 1980, Sulston
& Horvitz 1981). unc-84 alleles also cause nu-
clear migration defects in epidermal precursors
(Figure 2b, Horvitz & Sulston 1980, Sulston
& Horvitz 1981). The molecular cloning of
UNC-84 (Malone et al. 1999) in effect founded
the SUN-KASH field.

The C terminus of UNC-84 was found to
be conserved with the C termini of Schizosac-
charomyces pombe Sad1 and two human pro-
teins; each contains a ∼175 amino acid domain

Cytoplasm

Nucleus

a b

0.2 μm

SUN
protein

NPC

INM ONM

KASH
protein

ER

Figure 1
Klarsicht, ANC-1, and Syne/Nesprin homology (KASH) and Sad1 and
UNC-84 (SUN) proteins bridge the two membranes of the nuclear envelope.
(a) A transmission electron microscopy (TEM) image and (b) a schematic
representation of the nuclear envelope in an amphibian oocyte showing how
the inner nuclear membrane (INM), outer nuclear membrane (ONM), and
endoplasmic reticulum (ER) are contiguous. NPC, nuclear pore complex. A
generic SUN and KASH protein bridge is drawn with conserved SUN (red )
and KASH (purple) domains in the perinuclear space of the nuclear envelope.
TEM image reproduced with permission from J. Cell Biol. (Franke et al. 1981).

termed the SUN domain (Malone et al. 1999).
Sad1 is an essential component of the spindle
pole body required for normal spindle archi-
tecture (Hagan & Yanmagida 1995). Overex-
pressed Sad1::green fluorescent protein (GFP)
accumulates at the nuclear envelope, suggest-
ing an additional role for Sad1 in nuclear posi-
tioning during interphase (Goshima et al. 1999,
Tran et al. 2001). UNC-84 also localizes to the
nuclear envelope (Lee et al. 2002, Malone et al.
1999). Proteins with SUN domains are referred
to as SUN proteins and localize to the INM.

SUN Proteins Constitute the
Inner Nuclear Membrane Half
of the Nuclear-Envelope Bridge

SUN proteins are conserved across eukary-
otes including fungi, plants, animals, and basal

www.annualreviews.org • Nuclear-Cytoskeletal Interactions 423
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a  P cell nuclear migration in C. elegans larvae b  Nuclear migration in C. elegans embryo

c  Nuclear migration in Drosophila eye disc d  Nuclear achorage in C. elegans syncytia

Wild type

Forms vulva
and neurons

Egl and Unc
animals

Ventral cord

Apical

Basal

unc-83 or unc-84

Wild type

Wild type klarsicht or klaroid Wild type

unc-83 or unc-84

anc-1 or unc-84

Dorsal cord

Figure 2
Genetic models for studying nuclear positioning. (a) Nuclear migration in hypodermal P cells during the first larval stage of
Caenorhabditis elegans. Nuclei (dark blue) migrate from a lateral to a ventral position through the cytoplasm (light blue). P cells normally
go on to form the vulva and neurons in the ventral cord. Mutations in unc-83 or unc-84 disrupt nuclear migration and the P cells die,
resulting in egg-laying defective (Egl) and uncoordinated (Unc) animals. (b) Nuclear migration in C. elegans embryonic hypodermal
cells. Right (light blue) and left (light green) hyp7 precursors align along the dorsal cord of a pre-elongation embryo (brown circle, dorsal
view, anterior to the left) and intercalate to form a row of column-shaped cells spanning the dorsal midline. Nuclei (dark blue and dark
green) then migrate the length of the cell from right to left (blue) or left to right (green). Mutations in unc-83 and unc-84 disrupt nuclear
migration, and all nuclei end up in the dorsal cord instead of their normal, lateral positions. (c) Nuclear migration in the Drosophila eye
disc. After the morphogenetic furrow passes, nuclei (dark blue) migrate from a basal position to an apical one as they develop into
photoreceptors. In klarsicht or klaroid mutants, nuclei abnormally remain basal, disrupting the development of the eye, whereas
centrosomes (black ovals) organize microtubules (red strands) from an apical position. (d ) Nuclear anchorage in the adult C. elegans
syncytial hypodermis. Three large hypodermal syncytia, the hyp7 (light blue) syncytium and the lateral seam-cell syncytia (light green),
are used to study nuclear anchorage. Normally nuclei (dark blue and dark green) are anchored and spaced evenly apart. In anc-1 or
unc-84 mutant animals, nuclei are unanchored and often associate in clusters.

Sad1 and UNC-84
(SUN) domain: a
conserved domain of
an INM protein that
recruits KASH
proteins to the ONM

eukaryotes such as Giardia (Graumann et al.
2009, Jaspersen et al. 2006, Malone et al. 1999,
Mans et al. 2004, Starr 2009). Many higher
eukaryotes have multiple SUN proteins that
are often expressed at different times in devel-
opment (Crisp et al. 2006, Ding et al. 2007,
Graumann et al. 2009, Hodzic et al. 2004,
Kracklauer et al. 2007, Lu et al. 2008,

Malone et al. 2003, Padmakumar et al. 2005,
Shao et al. 1999). SUN proteins have many
common features. They have at least one trans-
membrane domain that enables most to local-
ize in the nuclear membrane (reviewed in Starr
2009, Tzur et al. 2006b, Worman & Gundersen
2006). Specifically, data suggest that SUN pro-
teins are components of the INM with the SUN
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Klarsicht, ANC-1,
and Syne homology
(KASH) domain: a
transmembrane span
followed by 6–30
residues at the C
terminus of a protein
that targets proteins to
the ONM

Nuclear positioning:
the act of a nucleus
migrating to a specific
location within a cell
and the process used to
anchor it there

Microtubule motors:
ATPases that move
cargo along
microtubule tracks;
dynein moves toward
the minus ends and
kinesin-1 toward the
plus ends

domain in the perinuclear space (Chikashige
et al. 2006, Crisp et al. 2006, Haque et al. 2006,
Hodzic et al. 2004, Jaspersen et al. 2002, McGee
et al. 2006, Padmakumar et al. 2005). Most
SUN proteins contain short coiled-coil regions
in their perinuclear domains that aid in dimer-
ization or multimerization (Crisp et al. 2006,
Haque et al. 2006, Lu et al. 2008, Malone et al.
1999).

The nucleoplasmic domains of SUN pro-
teins are not conserved. Although the N-
terminal nucleoplasmic domains contain the
signals needed for nuclear envelope localiza-
tion, how they are targeted to the nucleo-
plasm is not understood (Haque et al. 2010,
Hasan et al. 2006, Hodzic et al. 2004). Some
SUN proteins contain classical nuclear local-
ization signals, but mutating the mammalian
Sun1 classical nuclear localization signal has no
effect on nuclear envelope localization (Hodzic
et al. 2004). Other SUN proteins have predicted
INM-sorting motifs (Braunagel et al. 2004),
but their function in targeting to the INM re-
mains to be determined. Many SUN proteins
interact with lamins, but only some SUN pro-
teins require a functional lamin for localization
(Fridkin et al. 2004; Haque et al. 2006, 2010;
Hasan et al. 2006; Lee et al. 2002). Once in
the nucleoplasm, the N termini of SUN pro-
teins likely interact with the lamina or chro-
matin and have been hypothesized to regulate
gene expression (Chi et al. 2007, King et al.
2008, Oza et al. 2009, Wang et al. 2009). In
S. pombe, which has no lamins, the SUN pro-
tein Sad1 interacts with centromeres and het-
erochromatin in a network that is stabilized
by the INM protein Ima1 (NET5, for nuclear
envelope targeted, in mammals) (King et al.
2008).

The evidence supports a model in which
SUN proteins form the INM half of a nuclear-
envelope bridge (Figures 1 and 3). In this role,
SUN proteins anchor the bridge to the nuclear
lamina. Central to this model is that SUN pro-
teins also recruit the second half of the bridge,
KASH proteins, to the ONM.

Discovery of KASH Proteins

Drosophila Klarsicht, C. elegans ANC-1, and the
mammalian paralogs Syne/Nesprin-1 and -2
are the founding KASH (Klarsicht, ANC-1,
and Syne homology) proteins. The molecular
cloning of ANC-1 led to the recognition that
all of these proteins contain a conserved C-
terminal KASH domain (Starr & Han 2002).

Mutations in Drosophila klarsicht (originally
called marbles) were isolated in screens for
eye morphogenesis defects (Fischer-Vize &
Mosley 1994). Normally nuclei migrate basally
in the pseudostratified neuroepithelium of the
developing eye disc before migrating apically
to differentiate (Tomlinson 1985). In klarsicht
mutant animals, nuclei remain basal although
centrosomes are in their normal apical posi-
tion (Figure 2c, Fischer-Vize & Mosley 1994,
Mosley-Bishop et al. 1999, Patterson et al.
2004). Klarsicht localization to the nuclear en-
velope requires lamin and the SUN protein
Klaroid (Kracklauer et al. 2007, Patterson et al.
2004). Klarsicht has been proposed to coordi-
nate the activity of microtubule motors during
nuclear migration (Figure 3c; Patterson et al.
2004, Welte 2004, Welte et al. 1998).

Once a nucleus migrates to the proper po-
sition in the cell, mechanisms must exist to an-
chor it in place. Most of an adult C. elegans
is covered with four large hypodermal syncy-
tia containing more than 100 nuclei in total.
Normally these nuclei are evenly spaced and
anchored in place. However, in anc-1 or unc-
84 mutant animals, nuclei float freely in the
cytoplasm, often associating in large clusters
(Figures 2d and 4a, Hedgecock & Thomson
1982, Malone et al. 1999). ANC-1 is a gi-
ant protein of more than 8500 residues with
homology to Drosophila MSP-300, a protein
required for muscle development, and mam-
malian Syne/Nesprin-1 and -2 (Starr & Han
2002). Like Klarsicht, ANC-1 localizes to the
nuclear envelope via a SUN protein, UNC-84
(Starr & Han 2002).

Mammalian Syne/Nesprin-1 was first
cloned as a component of the postsynaptic
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Actin
filaments

Centrosome

Kinesin-1

Dynein

BicD
NudE/Lis1

Dynein

UNC-83

KLC

Nesprin-4 Klar
Csm4

Nesprin-3

KDP-1

Cell cycle
progression

Plectin

Intermediate
filaments

Actin

?
ZYG-12 Kms1/2

UNC-84
Dm SUN
Hs SUN

UNC-84
Hs SUN

Klaroid
SUN-1

Sad1
Mps3

KASH
SUN

SUN-1
UNC-84?

Hs SUN
Telomere

Lamin

Pore

ER

Microtubules

ONM

Cytoplasm

INM

Nucleus

ANC-1
MSP-300
Syne/Nesprin-1 and 2

a b c d e f g h

Figure 3
Functions of KASH-SUN nuclear-envelope bridges. KASH proteins are in the outer nuclear membrane (ONM). SUN protein dimers
(gold circles) are located in the inner nuclear membrane (INM) with their SUN domains (red ) in the perinuclear space, where they
interact with KASH domains (purple) to bridge the nuclear envelope. (a) Giant KASH proteins (blue) tether nuclei to actin filaments
(green). (b) UNC-83 and Nesprin-4 (green) function as nucleus-specific cargo adaptors for microtubule motors kinesin-1 (red ) through
the kinesin light chain (KLC, dark red ) and, at least for UNC-83, dynein (teal) through BicD and NudE/Lis1 complexes (pink and
purple). (c) Klarsicht (Klar, green) is thought to interact with dynein for nuclear migration. (d-f ) Nucleoplasmic domains of SUN
proteins interact with meiotic chromosomes (gray lines) through adaptors (gray circles) to aid in proper homolog pairing. (d ) Worm
ZYG-12 (orange) interacts with a KASH-less isoform of itself and dynein to tether the centrosome to the nucleus, to position the
nucleus, and to move chromosomes in meiosis. (e) Fission yeast Kms1 and 2 (blue) recruit dynein to move nuclei and telomeres in
meiosis. (f) Budding yeast Csm4 (blue) links actin filaments to the nucleus to move telomeres through unknown intermediates (?).
(g) Nesprin-3 interacts with intermediate filaments (gray) through plectin (blue). (h) Worm KDP-1 promotes cell-cycle progression.
Dm, Drosophila melanogaster; Hs, Homo sapiens.

apparatus in the neuromuscular junction
as a two-hybrid interacting partner of the
muscle-specific receptor tyrosine kinase
(MuSK) and named Syne-1 (synaptic nuclear
envelope-1) (Apel et al. 2000). Subsequently,
Syne/Nesprin-1 and/or -2 were isolated as
markers of vascular smooth muscle cells and

termed Nesprin (nuclear envelope spectrin
repeat) (Zhang et al. 2001), as novel spectrin
repeat-containing proteins called Myne (my-
ocyte nuclear envelope) (Mislow et al. 2002b),
by homology to C. elegans ANC-1 (Starr
& Han 2002), as a Golgi complex–specific
spectrin protein (Gough et al. 2003), and

426 Starr · Fridolfsson
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as a plasticity-related protein called CPG2
(Cottrell et al. 2004). The giant, full-length
Syne/Nesprin-1 and -2 transcripts (Enaptin
and NUANCE) were identified by their
N-terminal actin-binding domains having
similarity to α-actinin (Padmakumar et al.
2004, Zhen et al. 2002). Multiple antibodies
against Syne/Nesprin-1 and -2 localize to the
nuclear envelope (Apel et al. 2000, Mislow
et al. 2002b, Zhang et al. 2001, Zhang et al.
2007b, Zhen et al. 2002), and this localization
is dependent on SUN proteins (Crisp et al.
2006, Lei et al. 2009, Padmakumar et al. 2005).

KASH Proteins Interact
with SUN Proteins to Complete
the Nuclear-Envelope Bridge

KASH proteins have multiple common features
(reviewed in Starr & Fischer 2005). First, they
contain a C-terminal conserved KASH domain
consisting of a membrane-spanning region fol-
lowed by fewer than 35 residues before the C
terminus. The KASH domains of the founding
members of the family are highly similar, but
other, more distantly related KASH domains
have been identified (McGee et al. 2009, Starr
2009). KASH proteins are likely tail-anchored
proteins inserted into the ER membrane post-
translationally by Asna1-GET3 (Mateja et al.
2009, Rabu et al. 2009, Schuldiner et al. 2008,
Stefanovic & Hegde 2007). Second, KASH
proteins localize to the ONM with their con-
served KASH domain inserted into the per-
inuclear lumen and their large, divergent N-
terminal domains in the cytoplasm. A KASH
domain is necessary and sufficient to target
a protein to the ONM (Fischer et al. 2004,
Grady et al. 2005, Guo et al. 2005, McGee
et al. 2006, Meyerzon et al. 2009a, Starr &
Han 2002, Zhang et al. 2001, Zhang et al.
2007b). All known integral membrane pro-
teins that localize specifically to the ONM are
KASH proteins (Figure 3 and Supplemental
Table 1; follow the Supplemental Material
link from the Annual Reviews home page at
http://www.annualreviews.org).

a b c

a' b' c'

CP

IZ

IZ

15 μm 15 μm 250 μm

Figure 4
ANC-1 and Syne/Nesprin-1 and -2 tether nuclei to the actin cytoskeleton.
(a) In wild-type adult C. elegans, large syncytial nuclei [green fluorescent protein
(GFP) positive] are evenly spaced. (a′) In an anc-1 mutant animal, nuclei are
unanchored and are pushed around by underlying tissues and frequently cluster
together. (b) A mouse neuromuscular junction (NMJ) (red ) from a
heterozygous control with four muscle nuclei (green) clustered underneath.
(b′) In a Syne/Nesprin-1 KASH knockout mouse, nuclei fail to anchor
underneath the NMJ. Reproduced with permission from Development (Zhang
et al. 2007b). (c) A coronal section of an E18.5 heterozygous control mouse
showing neuronal migration. Green cells were transfected with a GFP
construct at E14.5. In that time, neurons migrated through the intermediate
zone (IZ) to the cortical plate (CP). (c′) In an analogously prepared slice of a
Syne/Nesprin-1 and -2 homozygous double KASH knockout brain, most
nuclear migrations failed. Adapted with permission from Neuron (Zhang et al.
2009).

A valuable tool for studying KASH proteins
is a dominant-negative construct overex-
pressing a KASH domain. When the ANC-1
KASH domain is overexpressed in C. elegans,
endogenous ANC-1 is displaced from the
nuclear envelope, causing a strong nuclear
positioning phenotype (Starr & Han 2002).
Analogous approaches have been used to study
vertebrate Syne/Nesprin-1 and -2 (Grady
et al. 2005, Tsujikawa et al. 2007). However,
the approach is nonspecific, and all KASH
proteins are likely displaced from the ONM,
which makes it difficult to assign the resulting
phenotypes to a single KASH protein.

Central to the nuclear-envelope bridge
model is that KASH proteins require SUN
proteins for localization to the ONM (Crisp
et al. 2006, Lei et al. 2009, Padmakumar et al.
2005, Starr & Han 2002). In support of this
genetic requirement, KASH and SUN domains
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directly interact (Crisp et al. 2006, Haque et al.
2010, McGee et al. 2006, Minn et al. 2009,
Ostlund et al. 2009, Padmakumar et al. 2005,
Stewart-Hutchinson et al. 2008). Once the
nuclear-envelope bridge is formed, the diver-
gent cytoplasmic domains of KASH proteins
are localized to the outer surface of the nuclear
envelope, where they perform a variety of
functions.

KASH-SUN interactions are dynamic. For
example, the SUN protein UNC-84 functions
with the KASH protein ANC-1 during nuclear
anchorage, but then functions through UNC-
83 during nuclear migration (Starr & Han 2002,
Starr et al. 2001). The best candidate for a reg-
ulator of KASH-SUN interactions is the chap-
eronin TorsinA (Naismith et al. 2004). TorsinA
localizes to the ER and perinuclear lumens
and physically interacts with KASH domains
(Goodchild & Dauer 2004, Nery et al. 2008).
Furthermore, changing the amount of TorsinA
at the nuclear envelope displaces KASH-SUN
complexes and alters the structure of the nu-
clear envelope (Naismith et al. 2004, Nery et al.
2008, Vander Heyden et al. 2009).

FUNCTIONS OF KASH PROTEINS
AT THE OUTER NUCLEAR
MEMBRANE IN POSITIONING
NUCLEI

Anchoring Nuclei to the
Actin Cytoskeleton

The giant proteins C. elegans ANC-1 (8546
residues for the largest predicted isoform),
Drosophila MSP-300 (8204), and mammalian
Syne/Nesprin-1 and -2 (8739 and 6885) are or-
thologs (Starr & Han 2002, Zhang et al. 2002).
Dictyostelium Interaptin, although smaller and
less similar, might also be an ortholog (Rivero
et al. 1998). All of them contain a highly sim-
ilar C-terminal KASH domain that is suffi-
cient for targeting to the ONM (Starr & Han
2002, Yu et al. 2006, Zhang et al. 2001). Addi-
tionally, their N termini are homologous with
calponin, bind actin in vitro, and colocalize with
actin filaments (Starr & Han 2002, Volk 1992,

Zhen et al. 2002). Finally, they have extended
middle domains that at least in the cases of
MSP-300 and Syne/Nesprin-1 and -2 are re-
lated to spectrin, making these proteins related
to dystrophin (Starr & Han 2003).

Phenotypic analyses demonstrate that C. el-
egans ANC-1 and mouse Syne/Nesprin-1 and
-2 anchor nuclei within the cell (Figure 4a,b;
Starr & Han 2002, Zhang et al. 2007b). The
role of MSP-300 in nuclear anchorage is not
clear (Technau & Roth 2008, Xie & Fischer
2008, Yu et al. 2006). These large KASH pro-
teins are thought to function as ropes, extending
away from the nuclear envelope to tether actin
filaments to the ONM (Figure 3a). An alter-
native hypothesis is that Syne/Nesprin-1 and
-2 form a spectrin-like filamentous basket sur-
rounding and supporting the ONM (Schneider
et al. 2008).

Centrosome Attachment to the
Nuclear Envelope during
Pronuclear Migration

In most cells, at least during part of the cell cy-
cle, centrosomes are closely associated with the
nuclear envelope (Bornens 1977, Starr 2009).
However, little is known about how this in-
teraction is maintained. The KASH protein
ZYG-12 and the SUN protein SUN-1/matefin
are essential for pronuclear migration in C.
elegans. Normally the female pronucleus mi-
grates toward the male pronucleus along mi-
crotubules emanating from centrosomes that
are closely associated with the male pronucleus
(Reinsch & Gonczy 1998). Mutations in zyg-12,
originally isolated as a zygotic lethal mutation
(Wood et al. 1980), or sun-1/matefin, as found
in a genome-wide RNAi screen, disrupt cen-
trosome attachment to the nuclear envelope,
blocking pronuclear migration (Figure 5a,
Malone et al. 2003).

ZYG-12 is a KASH protein with an N-
terminal cytoplasmic domain similar to that
of Hook proteins (Malone et al. 2003), which
are hypothesized to link membrane compart-
ments to microtubules (Walenta et al. 2001).
SUN-1/matefin recruits ZYG-12 to the ONM
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a b c

a' b' c'

10 μm25 μm10 μm

Figure 5
Functions of ZYG-1 and SUN-1/matefin. (a) A wild-type one-cell C. elegans embryo expressing
GFP::tubulin. The male and female pronuclei (dark holes in background) have completed their migration, and
both centrosomes remain closely attached to the male pronucleus. (a′) In a zyg-12 mutant embryo, the
centrosomes fail to attach to the male pronucleus, and pronuclear migration fails. Reproduced with
permission from Cell (Malone et al. 2003). (b) The midsection of a wild-type adult C. elegans syncytial gonad
is shown. ZYG-12 (green) marks the nuclear envelope, and tubulin is shown in red. Nuclei are anchored at
the periphery of the syncytial gonad. (b′) In a zyg-12(ct350) mutant, nuclei fall into the center of the syncytial
gonad. Reproduced with permission from The Journal of Cell Biology (Zhou et al. 2009). (c) CED-4 (green) is
recruited to the nuclear envelope (rings) in a C. elegans embryo. (c′) In a similarly staged sun-1/mtf-1 mutant
embryo, CED-4 fails to be recruited to the nuclear envelope. Reproduced with permission from the
Proceedings of the National Academy of Sciences, U.S.A. (Tzur et al. 2006).

(Malone et al. 2003, Minn et al. 2009), where
it interacts with the dynein light-intermediate
chain DLI-1 to recruit dynein heavy chain to
the cytoplasmic surface of the nuclear envelope
(Malone et al. 2003). This allows the grow-
ing male pronucleus to quickly recapture mi-
crotubule asters that might have drifted away
from it (Malone et al. 2003, Meyerzon et al.
2009b). However, disruption of dynein heavy
chain by RNAi causes only approximately 15%
of centrosomes to be detached from the male
pronucleus (Gonczy et al. 1999). To com-
pletely attach the centrosome to the nuclear
envelope, ZYG-12 in the ONM interacts with
a KASH-less isoform of ZYG-12 indepen-
dently recruited to the centrosome (Figure 3d,
Malone et al. 2003).

In other tissues and systems, the role of
KASH-SUN bridges in centrosome attach-
ment to the nucleus is less clear. For exam-
ple, KASH and SUN proteins are not required

for centrosome attachment during nuclear
migration events later in C. elegans development
(Lee et al. 2002, Starr et al. 2001). However,
in Dictyostelium, a SUN protein is required for
centrosome attachment (Xiong et al. 2008), and
mouse Syne/Nesprin-1 and -2 double knock-
out cells have a centrosome detachment pheno-
type (Zhang et al. 2009). Other nuclear enve-
lope components including emerin and lamin
attach centrosomes to nuclei in tissue culture
fibroblasts (Lee et al. 2007, Salpingidou et al.
2007).

Nuclear Anchorage to
Microtubules through Dynein

Nuclei are in an orderly arrangement at the
periphery of the syncytial C. elegans gonad
(Hubbard & Greenstein 2005). ZYG-12 and
SUN-1/matefin are required to maintain
the even spacing of nuclei and to prevent
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them from falling into the nucleus-free center
of the syncytial gonad via, surprisingly, a
centrosome-independent process (Zhou et al.
2009). Both zyg-12 alleles, zyg-12(ct350) and
zyg-12(or577), disrupt centrosome attachment
during pronuclear migration, but only the
zyg-12(ct350) allele disrupts nuclear posi-
tioning in the gonad (Figure 5b, Zhou et al.
2009). The zyg-12(ct350) allele disrupts the
ZYG-12-DLI-1 interaction and ZYG-12
dimerization, whereas the zyg-12(or577) allele
disrupts only dimerization (Malone et al. 2003,
Zhou et al. 2009). Therefore, ZYG-12 is
hypothesized to function through dynein, but
not the centrosome, to anchor nuclei to micro-
tubules in the gonad (Zhou et al. 2009). The
extent to which this mechanism is conserved
in other tissues and organisms remains to be
determined.

Targeting and Coordination of
Kinesin-1 and Dynein at the
Nuclear Surface

The KASH protein UNC-83 and the SUN
protein UNC-84 function together during nu-
clear migration in a variety of C. elegans tissues
(Figure 2, Malone et al. 1999, Starr et al. 2001).
The mechanisms through which UNC-83
generates forces to move nuclei were recently
elucidated. The cytoplasmic domain of UNC-
83 binds the KLC-2 light chain of kinesin-1 and
three regulators of dynein (Fridolfsson et al.
2010, Meyerzon et al. 2009a). Kinesin-1 mutant
animals have severe nuclear migration defects
(Meyerzon et al. 2009a). Similarly, mammalian
Nesprin-4 interacts with kinesin light chain
(Roux et al. 2009). Nesprin-4 expression is
limited to secretory endrocrine cells, making it
difficult to study its role in nuclear migration
(Roux et al. 2009). However, when expressed
in a heterologous HeLa system, Nesprin-4
recruits kinesin-1 to the nuclear envelope and
induces the nucleus to move away from the
centrosome toward the plus ends of micro-
tubules, suggesting that it plays a role in nuclear
positioning (Roux et al. 2009). Syne/Nesprin-2
interacts with dynein and kinesin in the

neuroepithelium, suggesting that different
KASH proteins play similar functions in
different tissues (Zhang et al. 2009). Drosophila
Klarsicht has also been proposed to function
through kinesin-1 (Shubeita et al. 2008, Welte
et al. 1998). Although they do not contain any
stretches of obvious similarity outside of their
KASH domains, UNC-83, Nesprin-4, and
Klarsicht may be functional homologs. All of
them appear to function as cargo adaptors at
the nuclear envelope to recruit kinesin-1 to
the cytoplasmic face of the nucleus (Figure 3b,
Meyerzon et al. 2009a, Roux et al. 2009). In
support of this model, a hybrid KLC-2::KASH
construct effectively targets to the ONM in
transgenic C. elegans and rescues the unc-83
nuclear migration defect (Meyerzon et al.
2009a).

UNC-83 also interacts with two dynein-
regulating complexes (Fridolfsson et al. 2010).
Mutations in any of these components or in
dynein heavy chain cause nuclear migration de-
fects. The defects are much less severe than unc-
83 or kinesin-1 mutants, suggesting that dynein
plays a regulatory role in hypodermal nuclear
migration (Fridolfsson et al. 2010). We pro-
pose that UNC-83 is a nuclear-specific cargo
adaptor for both motors and functions to co-
ordinate bidirectional movements leading to a
net migration toward the plus ends of micro-
tubules (Figure 3b). Whereas kinesin-1 pro-
vides the major force, dynein ensures that the
migration proceeds normally (Fridolfsson et al.
2010).

Attachment of Nuclei
to Intermediate Filaments

Intermediate filaments have long been pro-
posed to play a role in nuclear positioning.
Vimentin is often associated with nuclei, and
defects in vimentin disrupt nuclear morphol-
ogy (Toivola et al. 2005). Additionally, mice
with knockouts of desmin have severe nuclear
anchorage defects in skeletal muscles (Ralston
et al. 2006). Thus, it is not surprising that a
KASH protein associates with intermediate
filaments (Figure 3g). Plectin is a plakin family
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member that cross-links actin filaments to
intermediate filaments (Wiche 1998). A yeast
two-hybrid screen with the actin-binding do-
main of plectin identified the N terminus of the
KASH protein Nesprin-3 (Wilhelmsen et al.
2005). The KASH domain of Nesprin-3 and
Sun1 and/or Sun2 are necessary for localiza-
tion of Nesprin-3 to the ONM (Ketema et al.
2007). Overexpression of Nesprin-3 recruits
intermediate filaments to the nuclear envelope
(Wilhelmsen et al. 2005). However, a mouse
knockout of Nesprin-3 has no obvious mor-
phological phenotypes (K. Lei and R. Xu,
personal communication). Thus, the role of
Nesprin-3 in nuclear positioning remains to
be characterized.

KASH AND SUN PROTEINS
REGULATE THE GLOBAL
CYTOSKELETON

ANC-1 and Syne/Nesprin-1 and -2 have addi-
tional functions in the regulation of the global
cytoskeleton and subsequent localization of
other organelles. For example, anc-1 mutant
animals have a mitochondrial positioning
defect (Hedgecock & Thomson 1982, Starr &
Han 2002). Syne/Nesprin-1 plays roles in the
structure of the Golgi complex, cytokinesis,
formation of a perinuclear actin cap, and
vesicle transport (Fan & Beck 2004, Gough
& Beck 2004, Gough et al. 2003, Khatau
et al. 2009). In dominant-negative KASH
overexpression 3T3 cells, the mechanical
stiffness of the cytoskeleton far away from the
nucleus is disrupted (Stewart-Hutchinson et al.
2008). Additionally, mechanically pulling on
beads attached to the surfaces of cells through
integrins causes immediate reorganization of
the nucleoplasm, suggesting that the extra-
cellular matrix is physically connected to the
nucleoplasm (Maniotis et al. 1997). These data
lead to a hypothesis that KASH and SUN
proteins function in mechanotransduction of
physical signals from the extracellular matrix
directly to chromatin ( Jaalouk & Lammerding
2009, Wang et al. 2009).

FUNCTIONS OF KASH-SUN
BRIDGES IN MEIOTIC
CHROMOSOME MOVEMENTS

The initial characterization of KASH-SUN
bridges came from studying their roles in the
positioning of whole nuclei. Another interest-
ing problem is how forces generated in the cy-
toskeleton are used to move objects within the
nucleus. A major discovery in the field was the
demonstration that KASH-SUN bridges are
also used to move telomeres within the nucleus
during meiosis in S. pombe (Figures 3e and 6c;
Chikashige et al. 2006).

In many systems, meiotic chromosomes
dramatically rearrange such that telomeres
associate with the INM and cluster together to
form a bouquet, which aids in homolog pairing
(reviewed in Harper et al. 2004). The forces to
move meiotic chromosomes are generated by
dynein on microtubules in S. pombe and C. ele-
gans (Figure 3d,e; Chikashige et al. 2006, Sato
et al. 2009) but by actin dynamics in Saccha-
romyces cerevisiae (Figure 3f, Conrad et al. 2008,
Koszul et al. 2008). KASH-SUN bridges then
transfer these forces across the nuclear enve-
lope to the meiotic chromosomes (reviewed in
Hiraoka & Dernburg 2009, Starr 2009). SUN
proteins are required for the association of
telomeres (or pairing centers in C. elegans) to the
INM (Figure 6, Bupp et al. 2007, Conrad et al.
2007, Ding et al. 2007, Penkner et al. 2007).
KASH proteins Kms1 and Kms2 in S. pombe
and ZYG-12 in C. elegans interact with dynein
to move along microtubules (Chikashige et al.
2006, Miki et al. 2004, Penkner et al. 2009, Sato
et al. 2009). The S. cerevisiae KASH protein
Csm4 interacts with the actin cytoskeleton
(Conrad et al. 2008, Koszul et al. 2008, Starr
2009). Defects in the KASH or SUN proteins
involved in meiotic chromosome movements
lead to aberrant synapsis and a reduction in
recombination, but do not block recombina-
tion (reviewed in Hiraoka & Dernburg 2009,
Koszul & Kleckner 2009).

The finding that KASH-SUN bridges are
used to move meiotic chromosomes opens up
the question as to what their role might be
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Figure 6
Roles of KASH-SUN bridges in moving meiotic chromosomes. (a) Transmission electron microscopy image
from a mouse spermatocyte showing a telomere (arrowheads) of a synapsed meiotic bivalent (extending up
from telomere) attached to the inner nuclear membrane (INM) of the nuclear envelope (NE). Ch,
chromatin. Reproduced with permission from The Proceedings of the National Academy of Sciences, U.S.A.
(Schmitt et al. 2007). (b) A heterozygous control mouse spermatocyte showing telomeres (red ) of bivalents
(green) attached to the nuclear envelope (purple). (b′) A spermatoycyte from a sterile Sun1 homozygous
knockout mouse showing that telomeres fail to attach to the nuclear envelope. Reproduced with permission
from Developmental Cell (Ding et al. 2007). (c) Sad1 (red in merge) localizes predominantly to the spindle pole
body (89 min). During meiosis, some Sad1 leaves the spindle pole body, associates with telomeres (Telo,
green in merge) on the INM (109 min), and moves the telomeres to the spindle pole body to form the
bouquet formation (180 min). Reproduced with permission from Cell (Chikashige et al. 2006).

in chromosome movements in interphase cells.
Moving loci within the nucleoplasm affects
transcription (reviewed in Akhtar & Gasser
2007). Therefore, and in agreement with the
mechanotransduction hypothesis, KASH and
SUN proteins are likely to play active roles in
transcription control. In one example, the S.
pombe KASH proteins Kms1 and Kms2 and the
SUN protein Sad1 are involved in anchoring
centromeres and heterochromatin at the INM
(King et al. 2008).

OTHER FUNCTIONS OF KASH
AND SUN PROTEINS

To this point, we have focused on the structural
roles KASH-SUN bridges play in transferring

forces generated in the cytoplasm to the struc-
tural components of the nucleus. Other KASH
proteins recruited to the ONM are used to reg-
ulate diverse cellular processes.

C. elegans KDP-1 Regulates the
Progression of the Cell Cycle

KDP-1 (for KASH-domain protein), which
was identified in a membrane-bound yeast
two-hybrid screen with the SUN domain of
UNC-84 as bait, localizes to the nuclear en-
velope in a SUN-1/matefin dependent manner
(Figure 3h, McGee et al. 2009). Disruption of
kdp-1 by RNAi causes multiple phenotypes in
the early embryo, larvae, and germ line that are
characteristic of a delay in the cell cycle exiting
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Neuromuscular
junction (NMJ): a
synapse between the
myotube and the
neuron where 3–6
muscle nuclei associate
and become
transcriptionally
specialized

S-phase or entering M-phase (McGee et al.
2009). We hypothesize that as a KASH pro-
tein, KDP-1 is perfectly positioned on the outer
surface of the nuclear envelope to receive a sig-
nal from the nucleoplasm that S-phase is com-
plete and then to relay the message to cdk/cyclin
complexes. It will be interesting to see whether
this role in cell cycle regulation is conserved.

WIPs Recruit RanGAP
to the Outer Nuclear Membrane

The establishment of a Ran GTP gradient, with
Ran GDP in the cytoplasm, controls the traf-
ficking of soluble proteins between the nucleo-
plasm and cytoplasm (Cook et al. 2007, Meier
et al. 2008). The mammalian nuclear pore com-
ponent Nup358/RanBP2 targets RanGAP to
the cytoplasmic surface of the pore to ensure
that Ran GTP is quickly hydrolyzed to GDP
upon exiting the nucleus (Mahajan et al. 1997).
Alternatively, in Arabidopsis RanGAP is targeted
to the ONM by a plant-specific family of in-
tegral ONM proteins called WIPs (for WP-
domain interacting proteins) (Xu et al. 2007).
WIP1, 2, and 3 are C-tail-anchored integral
membrane proteins; the C terminus and the
transmembrane domain are necessary and suf-
ficient for ONM localization (Xu et al. 2007).
Although the role of plant SUN proteins has
not been tested in this process, the WIPs are
likely KASH proteins.

Recruitment of CED-4 to the Nuclear
Envelope to Mediate Apoptosis

During the initiation of programmed cell
death in C. elegans, the caspase activator and
proapoptotic factor CED-4 (the Apaf-1 ho-
molog) translocates from the mitochondria
to the nuclear envelope (Chen et al. 2000);
SUN-1/matefin is required for this process
(Figure 5c, Tzur et al. 2006a). Further-
more, sun-1/matefin(RNAi) embryos have sig-
nificantly fewer apoptotic events, suggesting
that the translocation of CED-4 to the nu-
clear envelope is an important step in apoptosis
(Tzur et al. 2006a). A KASH protein associ-

ated with SUN-1/matefin would be ideally sit-
uated in the ONM as a CED-4 receptor. How-
ever, no KASH protein has been implicated in
the translocation of CED-4 to the nuclear en-
velope. SUN-1/matefin binds CED-4 in vitro,
raising the possibility that activated CED-4 en-
ters the nucleoplasm and interacts with SUN-
1/matefin at the INM (Tzur et al. 2006a).

FUNCTIONS OF KASH-SUN
PROTEINS IN MAMMALS: MOUSE
MODELS AND HUMAN DISEASES

The studies described to this point demon-
strate that links between the nucleus and the
cytoskeleton are essential to a wide variety of
cellular processes. Because these studies were
carried out in model organisms or tissue cul-
ture systems, there are limitations to interpret-
ing how these results relate to human develop-
ment and disease. Thus, it is gratifying that re-
cent findings connect SUN and KASH proteins
to human diseases and developmental processes
in mouse models. Mutations in KASH or SUN
proteins contribute to muscular, neurological,
skin, and premature-aging disorders.

Nuclear Positioning in Muscles
and Muscular Dystrophies

Mouse Syne/Nesprin-1 and -2 and their
partners SUN1 and SUN2 anchor nuclei.
In mammalian skeletal muscles, most nuclei
are evenly spaced throughout the syncytial
myotube, whereas 3–6 functionally specialized
nuclei are anchored beneath the neuromuscu-
lar junction (NMJ). Overexpression of either
the Syne/Nesprin-1 or -2 KASH domain in
muscles displaces most of the endogenous
Syne/Nesprin-1 and -2 and partially disrupts
synaptic nuclear clustering (Figure 4b, Grady
et al. 2005, Zhang et al. 2007b). Mouse knock-
outs of KASH domain–containing isoforms
of both genes, individually or simultaneously,
provide a more complete understanding of the
functions of Syne/Nesprin-1 and -2 (Zhang
et al. 2007b). In Syne/Nesprin-1 but not
Syne/Nesprin-2 single KASH knockouts,
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EDMD: Emery-
Dreifuss muscular
dystrophy

Laminopathies: a
broad range of human
diseases caused by
mutations in proteins
associated with the
nuclear envelope

synaptic and nonsynaptic nuclei are com-
pletely unanchored (Zhang et al. 2007b).
Syne/Nesprin-1 and -2 have partially overlap-
ping functions because mice lacking both pro-
teins die shortly after birth (Zhang et al. 2007b).
SUN1 single knockout mice have defects in
nuclear anchorage at the NMJ, but SUN1/2
double knockout mice have more severe
synaptic nuclear positioning defects as well as
nonsynaptic nuclear positioning defects and die
shortly after birth (Lei et al. 2009). Thus, mouse
KASH and SUN proteins function in muscle
development, but the question remains as to
how they relate to human muscular diseases.

Emery-Dreifuss muscular dystrophy
(EDMD) is a neuromuscular condition
characterized by progressive skeletal muscle
degeneration with associated cardiomyopathy
that originally was found to be caused by
mutations in the nuclear-envelope proteins
emerin or lamin (Bione et al. 1994, Bonne et al.
1999). EDMD is one of a broad spectrum of
more than 30 diseases known as laminopathies
that are caused by mutations in components
of the nuclear envelope (reviewed in Dauer &
Worman 2009, Ellis 2006, Worman & Bonne
2007). Although the proteins underlying
laminopathies are ubiquitously expressed,
patients develop disease symptoms in a tissue-
specific manner. The diseases may be caused
by defective nuclei acquiring an increased sen-
sitivity to mechanical stress or a misregulation
of genes required for development (reviewed in
Dauer & Worman 2009, Ellis 2006, Worman
& Bonne 2007). The majority of EDMD
patients do not have mutations in either lamin
or emerin (Bonne et al. 2003). Syne/Nesprin-1
and -2 interact in vitro with both emerin
and lamin, and this interaction is altered by
mutations that cause EDMD (Mislow et al.
2002a, Wheeler et al. 2007). Therefore, Syne/
Nesprin-1 and -2 may contribute to main-
taining the integrity of myonuclei during
mechanical stress by forming complexes with
emerin and lamin. In support of this hypoth-
esis, Syne/Nesprin-1 and -2 sequence variants
have been found in EDMD patients that do not
have either emerin or lamin mutations (Zhang

et al. 2007a). Syne/Nesprin-1 mutations have
also been linked to myogenic autosomal
recessive arthrogryposis, further implicating
Syne mutations in human muscle pathogenesis
(Attali et al. 2009).

Unlike the Syne/Nesprin-1 KASH knock-
out mouse described in Zhang et al. (2007b),
a second Syne/Nesprin-1 KASH knockout
mouse is a potential EDMD model. Mice
with this Syne/Nesprin-1 mutation are peri-
natal lethal, and only approximately half sur-
vive birth (Puckelwartz et al. 2009). Surviving
mice display EDMD-like phenotypes includ-
ing an abnormal curvature of the spine, mus-
cle pathology, and cardiac conduction defects
that develop with age. They also have myonu-
clear anchorage defects, but Syne/Nesprin-1,
SUN2, emerin, and lamin localize normally
(Puckelwartz et al. 2009). These phenotypes
are likely due to a dominant-negative effect
of incorporating mutant Syne/Nesprin-1 into
complexes at the nuclear envelope. Consistent
with this, the KASH-SUN interaction is dis-
rupted, indicating that an uncoupling of the
nucleoskeleton and the cytoskeleton may be
responsible for the muscle defects (Puckel-
wartz et al. 2009). In the mice in Zhang et al.
(2007b), Syne/Nesprin-1 does not localize to
the nuclear envelope, and there is no lethal-
ity or EDMD-like phenotypes. The differences
in these two Syne/Nesprin-1 KASH-deleted
mutant lines could be explained by the differ-
ent mouse backgrounds used to generate the
knockout lines or the different C termini gen-
erated by the slightly different KASH domain
deletions (Puckelwartz et al. 2009, Zhang et al.
2007b).

Lamin A/C or lamin B knockout mice phe-
nocopy EDMD, have defects in the develop-
ment of the central nervous system and the
phrenic nerve, and disrupt nuclear positioning
at the NMJ (De Sandre-Giovannoli et al. 2002,
Mejat et al. 2009, Nikolova et al. 2004, Sullivan
et al. 1999, Vergnes et al. 2004). These pheno-
types are strikingly similar to Syne/Nesprin and
SUN knockout mice. Because lamins recruit
SUN proteins to the nuclear envelope, many
of the defects in lamin knockout mice likely are
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due to defects in recruiting SUN and KASH
proteins to the nuclear envelope.

Syne/Nesprin and SUN proteins also
have significant functions in other tissues.
The phrenic nerve of the diaphragm in
Syne/Nesprin double knockout mice displays
longer branches than in wild-type mice, sug-
gesting that Syne/Nesprin-1 and -2 mutations
disrupt more than just myonuclear anchorage
(Zhang et al. 2007b). Furthermore, the lethality
of SUN double knockout mice is rescued by ex-
pressing SUN1 specifically in neurons (Lei et al.
2009). In these rescued mice, Syne/Nesprin
localization in muscles remains disrupted, in-
dicating that the lack of muscle functions of
Syne/Nesprin and SUN proteins is not respon-
sible for the lethality of the knockout mice (Lei
et al. 2009).

Neuronal Functions
of SUN-KASH Proteins

Syne/Nesprin-1 and -2 play important roles
in neuronal development. In the developing
neuroepithelium, nuclear migration events are
required for both neurogenesis and neuronal
migration (reviewed in Baye & Link 2008).
Neurons proliferate in the neuroepithelium
while undergoing interkinetic nuclear migra-
tion, during which centrosomes remain at the
apical surface, while the nucleus migrates be-
tween the apical and basal surfaces in conjunc-
tion with cell cycle progression (Frade 2002).
It has been proposed that dynein moves the
nucleus to the apical surface, whereas kinesin
moves the nucleus toward the basal surface (re-
viewed in Baye & Link 2008). Syne/Nesprin
proteins genetically interact with dynein to
move the nucleus during proliferative interki-
netic nuclear migration and nuclear positioning
events in photoreceptor cells in the develop-
ing retina of zebrafish (Del Bene et al. 2008,
Tsujikawa et al. 2007). Lissencephaly, a severe
mental retardation disease, is caused by a nu-
clear migration defect in neurons radially mi-
grating out from the neuroepithelium into the
outer layers of the cortex during development
(reviewed in Lambert de Rouvroit & Goffinet

2001, Morris et al. 1998). In these neurons, the
centrosome moves at a constant rate toward the
leading edge of the cell, whereas the nucleus
moves in a saltatory manner behind it (Bellion
et al. 2005, Schaar & McConnell 2005, Tsai
et al. 2007). Syne/Nesprin-dependent targeting
of dynein to the nuclear envelope apparently
pulls on centrosomal microtubules to move the
nucleus (Tsai et al. 2007, Zhang et al. 2009),
providing a possible link between KASH and
SUN proteins and lissencephaly.

Double knockout mouse lines show that
SUN and KASH proteins play essential
functions in the nervous system. Loss of either
SUN1 and SUN2 or Syne/Nesprin-1 and -2
leads to lethality, reduced brain size, malformed
cortices, enlarged lateral ventricles, a smaller
corpus callosum, and multiple brain regions
with severe laminary defects (Zhang et al.
2009). Syne/Nesprin-2 alone is required for
proper laminary formation in the hippocampus
and cerebral cortex, whereas Syne/Nesprin-1
and -2 have redundant roles in other brain
regions. Although Syne/Nesprin-2 KASH
knockout mice are viable, they have working
memory defects (Zhang et al. 2009). The
laminary defects seen in the cerebral cortex of
SUN double knockout and Syne/Nesprin-2
knockout mice are the result of failed radial
migrations caused by failure of the nucleus to
migrate (Figure 4c). This is likely due to dis-
sociation of the centrosome from the nucleus,
which supports the model that Syne/Nesprin
proteins couple microtubules to the nucleus
through dynein (Zhang et al. 2009). Consistent
with this, Syne/Nesprin-1 and -2 colocalize
at the nuclear envelope with dynein (Zhang
et al. 2009). The small brain size in the double
knockout mice is likely caused by a reduction
in the number of progenitor cells caused
by disrupted interkinetic nuclear migration,
as Syne/Nesprin-2 colocalizes and interacts
with kinesin-1 at the nuclear envelope in the
neuroepithelium (Zhang et al. 2009).

Consistent with a role for Syne/Nesprin
proteins in human neural development,
Syne/Nesprin-1 mutations cause auto-
somal recessive cerebellar ataxia type 1
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Progeria: a human
disease of premature,
rapid aging

HGPS: Hutchinson-
Gilford progeria
syndrome

(ARCA1) (Gros-Louis et al. 2007). Ataxias are
characterized by a lack of coordination of gait
and limbs along with neurological symptoms;
ARCA1 is late onset (Gros-Louis et al. 2007).
ARCA1 patients have misplaced nuclei at
the NMJ, phenocopying Syne/Nesprin-1
knockout mice (Gros-Louis et al. 2007). The
relationship between this nuclear positioning
phenotype and the progression of ARCA1 re-
mains unclear. Dystonia DYT1, a neurological
disease of involuntary movements caused by
deletion of a single residue in TorsinA (Ozelius
et al. 1999, Tanabe et al. 2009) may also be the
result of disrupted KASH-SUN complexes.
Because TorsinA has been proposed to func-
tion as a regulator of KASH-SUN interactions,
the role of TorsinA and KASH proteins in
dystonia merits further investigation.

SUN-KASH Proteins in Aging

One of the more exciting issues in the field is
the role of the nuclear envelope in normal ag-
ing and diseases of premature aging. Mutations
in lamin A/C cause multiple laminopathies (re-
viewed in Dauer & Worman 2009, Prokocimer
et al. 2009, Worman & Bonne 2007). One,
Hutchinson-Gilford progeria syndrome
(HGPS), is characterized by loss of subcu-
taneous fat, severe hair loss, restrictive joint
mobility, bone abnormalities, cardiovascular
disease, and progressive arteriosclerosis—
all characteristics of premature aging
(Hennekam 2006). Fibroblasts from HGPS
patients and a lamin A/C HGPS-mouse model
have altered mechanical properties that lead
to abnormal nuclear architecture and mor-
phology (Broers et al. 2004, Dahl et al. 2006).
Furthermore, fibroblasts from HGPS mice
have defects in the localization of KASH and
SUN proteins to the nuclear envelope (Crisp
et al. 2006, Libotte et al. 2005). The amount
of Syne/Nesprin-2 at the nuclear envelope is
inversely proportional to the HGPS nuclear
morphology and chromatin organization
defects (Kandert et al. 2007). This suggests
that Syne/Nesprin-2 function at the nuclear
membrane offsets the harmful effects of the

HGPS lamin A/C mutation and may function
in the prevention of normal aging.

SUN-KASH Proteins in Skin
Development, Ciliogenesis,
and Cancer

SUN and KASH proteins are ubiquitously ex-
pressed in human tissues (Zhang et al. 2001;
Crisp et al. 2006), and whereas their functions
in muscle and neurons are becoming evident,
what role Syne/Nesprin and SUN proteins have
in other tissues remains less clear. Nuclear posi-
tioning in the epidermis is essential for epider-
mal stratification during development (Lechler
& Fuchs 2005), and mice lacking the largest
isoform of Syne/Nesprin-2 in the skin show a
thickening of the epidermis (Luke et al. 2008).
These mice, which were created by deleting the
actin-binding domain of Syne/Nesprin-2, also
exhibit epidermal nuclear morphology defects
(Luke et al. 2008), which suggests important
roles for SUN and KASH proteins in skin de-
velopment.

Meckel-Gruber Syndrome (MKS) is char-
acterized by bilateral renal cystic dysplasia
and central nervous system developmental de-
fects caused by mutations in genes that con-
tribute to building cilia (Kyttala et al. 2006).
Syne/Nesprin-2 is required for ciliogenesis in
cell culture, interacts with components of the
primary cilium, and appears to be required for
centrosome migration to the apical cell surface
during the early stages of ciliogenesis (Dawe
et al. 2009). In addition, MKS patient cells
show a redistribution of Syne/Nesprin-2 and
a reduced centrosome-nucleus distance (Dawe
et al. 2009). Thus, SUN and KASH proteins
apparently function in ciliogenesis.

Recent studies have linked Syne/Nesprin-1
and -2 to cancer. Mutations in Syne/Nesprin-
1 and -2 frequently accumulate in colorec-
tal and breast cancer tumors, respectively
(Sjoblom et al. 2006). Furthermore, expres-
sion of Syne/Nesprin-1 is downregulated 20–
180-fold in a variety of early tumors (Marme
et al. 2008). Finally, a large epidemiological
study found a potential association between a
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polymorphism in Syne/Nesprin-1 and an in-
creased risk of invasive ovarian cancer (Doherty
et al. 2010). Together these studies raise the

exciting possibility that KASH and SUN pro-
teins play roles in cancer progression and there-
fore warrant further studies.

SUMMARY POINTS

1. Essential functions of KASH and SUN proteins were initially discovered and character-
ized by nonbiased forward genetic screens in model yeast and invertebrates.

2. SUN proteins are components of the INM; their N termini interact with the nuclear
lamina, and their conserved C-terminal SUN domains extend into the perinuclear space.

3. SUN proteins recruit KASH proteins specifically to the ONM to complete a bridge
across the nuclear envelope.

4. Divergent cytoplasmic domains of KASH proteins mediate interactions with micro-
tubules, centrosomes, and actin filaments to position nuclei within the cell.

5. KASH-SUN nuclear-envelope bridges also function in meiosis to attach chromosomes
to the INM and move them into the bouquet formation, aiding homolog pairing.

6. Mouse knockout studies show that functions of KASH and SUN proteins are conserved
from single-cell eukaryotes all the way to mammalian systems, where they play essential
roles in neuromuscular development.

7. KASH and SUN proteins have been linked to cancer and implicated in the progression
of human diseases including a variety of laminopathies and neurological disorders.

FUTURE ISSUES

1. It remains to be determined how the interactions between KASH and SUN domains
are regulated and remodeled during developmental switches, such as between nuclear
anchorage and migration.

2. Researchers need to identify the complete array of nucleoplasmic proteins that interact
with SUN proteins, cytoplasmic proteins that interact with KASH proteins, and their
corresponding functions.

3. The model that mechanical stimuli are transferred from the outside of the cell directly
to chromatin through KASH-SUN bridges needs to be tested.

4. Researchers need to fully elucidate the mechanisms of how KASH and SUN proteins
function in the progression of cancer, laminopathies, and other diseases.
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