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SUMMARY

High-content screening for gene profiling has gener-
ally been limited to single cells. Here, we explore an
alternative approach—profiling gene function by
analyzingeffectsofgeneknockdownson thearchitec-
ture of a complex tissue in a multicellular organism.
We profile 554 essential C. elegans genes by imaging
gonad architecture and scoring 94 phenotypic
features. To generate a reference for evaluating
methods for network construction, genesweremanu-
ally partitioned into 102 phenotypic classes, predict-
ing functions for uncharacterized genes across
diverse cellular processes. Using this classification
as a benchmark, we developed a robust computa-
tional method for constructing gene networks from
high-content profiles based on a network context-
dependentmeasure that ranks thesignificanceof links
between genes. Our analysis reveals that multi-para-
metric profiling in a complex tissue yields functional
maps with a resolution similar to genetic interaction-
based profiling in unicellular eukaryotes—pinpointing
subunits of macromolecular complexes and compo-
nents functioning in common cellular processes.

INTRODUCTION

A major challenge of the postgenomic era is to translate the parts

lists generated by genome sequencing intomaps of the pathways
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that execute cellular processes. Approaches to do this combine

systematic gene inhibition with functional tests that span

a continuum—from single readout assays to complex assays

that interrogate a broad spectrum of cellular processes. Whereas

single readout assays identify pathways that impact a specific

process (Mathey-Prevot and Perrimon, 2006), complex assays

can be used to construct functional networks from collections of

genes with diverse cellular roles. Two approaches have emerged

for distilling complex phenotypes for phenotypic profiling: genetic

interaction profiling and high-content screening. Although the

methodologies are distinct, both strategies translate the conse-

quences of inhibiting gene activity into phenotypic profiles that

canbecompared togenerate amapof the functional relationships

between genes (Boone et al., 2007; Collins et al., 2009; Conrad

and Gerlich, 2010; Piano et al., 2002; Sönnichsen et al., 2005).

Genetic interaction profiling was pioneered in budding yeast,

using a comprehensive deletion library of non-essential genes

and collections of hypomorphic alleles of essential genes (Boone

et al., 2007; Collins et al., 2009). Genetic interaction profiling

captures the consequences of inhibiting a gene by measuring

the effect on growth rate of pairwise inhibitions with each of

the other genes in the collection. This analysis generates quanti-

tative interaction profiles for each gene that can be clustered to

reveal functionally significant relationships. A genome-scale

genetic interaction map was recently constructed for

S. cerevisiae (Costanzo et al., 2010), and maps have also been

generated for subsets of gene implicated in specific

processes—such as RNA processing, chromosome biology,

proteasome function, and the secretory pathway (Breslow

et al., 2008; Collins et al., 2007; Schuldiner et al., 2005; Wilmes

et al., 2008).
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In metazoans, genetic interaction profiling is difficult to

implement because comprehensive libraries of deletion/hypo-

morphic strains do not exist and developing reproducible

high-throughput methods to quantify fitness is a formidable

barrier (Gunsalus, 2008). Consequently, high-content screening

is the primary method for mapping functional gene networks in

animal cells. In a high-content screen, light microscopy is

used to assess phenotypes arising from gene inhibition by

RNA-mediated interference, and the phenotype is captured by

scoring a large parameter set (Conrad and Gerlich, 2010). The

depth of the phenotypic profile is based on the biological

complexity of the assay and the nature and accuracy of param-

eter scoring. To date, the requirement for high-resolution

imaging has generally limited high-content screening to single

cells or early embryos.

C. elegans is a prototype metazoan system for the func-

tional mapping of essential genes (Piano et al., 2006).

C. elegans has �20,000 genes, of which �2,500 are essential

for embryo production or viability (WormBase release WS210;

Harris et al., 2010). In a set of pioneering high-content

screens, time-lapse Differential Interference Contrast (DIC)

microscopy was used to film the early divisions of embryos

following individual inhibitions of specific subsets of

C. elegans genes (Gönczy et al., 2000; Piano et al., 2000; Zip-

perlen et al., 2001). This was extended to a full-genome

screen that generated high-content phenotypic profiles for

�500 essential genes (Sönnichsen et al., 2005). These profiles

were combined with protein-protein interaction and expression

profiling data to create a first-generation integrative map that

linked 305 essential C. elegans genes in a ‘‘multiple support’’

network that grouped genes into modules involved in specific

processes including spindle assembly, chromosome segrega-

tion, nuclear envelope dynamics, cortical dynamics, and

centrosome function (Gunsalus et al., 2005). Despite the

success of these studies, a large collection of essential genes

could not be profiled because their inhibition results in sterility

of the treated worm. Thus, the 554 genes in the ‘‘sterile’’

collection, which control fundamental cellular processes such

as membrane trafficking, translation, proteasome function,

and cortical remodeling, were largely absent from this

analysis.

To fill this gap in the analysis of the C. elegans essential

gene set, we profiled the 554 sterile genes by imaging syncy-

tial gonad architecture at high-resolution following gene

knockdown and scoring 94 phenotypic parameters. To

generate a reference for evaluating computational methods

for network construction, genes were manually partitioned

into 102 phenotypic classes, predicting functions for 106 of

the 116 uncharacterized genes in the collection. Using the

manual classification as a benchmark, we developed a robust

computational method for constructing gene networks from

high-content profiles based on a network context-dependent

measure that ranks the significance of functional links between

genes. This method allowed us to integrate our data with

that from the prior high-content embryo-filming dataset to

generate a network representation of 818 essential C. elegans

genes that can be viewed at multiple levels of functional

resolution.
RESULTS

Phenotypic Profiling Based on The Morphology
of a Complex Tissue: The C. elegans Gonad
Around 900C. elegans genes are required for embryo production

and/or for the early embryonic cell divisions (Sönnichsen et al.,

2005); this collection includes the majority of genes essential

for basic processes common to all cells. Because their inhibition

leads to sterility, 554 of these genes could not be profiled by

embryo filming.Of the 554 sterile genes, 166wereunnamed, indi-

cating no prior characterization (Figure 1A). For each unnamed

gene, we determinedwhether the predicted product is amember

of aKOG (eukaryotic orthologous group; Tatusov et al., 2003) and

used the Ensembl database to determine if it has orthologs

across species.Of the166unnamedgenes, 50hadcharacterized

orthologs that predicted a function for the C. elegans protein

(Unnamed-Group I in Table S2). The remaining 116 were either

members of KOGs of unknown function, had no predicted ortho-

logs, or had multiple C. elegans paralogs (Unnamed-Group II in

Table S2); we refer to these 116 genes as ‘‘uncharacterized’’

(Figure 1A).

To profile the 554 sterile genes, we developed a high-content

assay based on 3D two-color fluorescence confocal imaging of

the gonad, a complex tissue in the adult C. elegans hermaphro-

dite (Figure 1B). The syncytial gonad contains �1000 meiotic

nuclei in cup-shaped compartments open to a common

cytoplasmic core. Compartments mature into oocytes as they

progress from the distal tip to the proximal region of the gonad

adjacent to the spermatheca. Gonad maturation and main-

tenance involves a broad spectrum of basic cellular processes

(Figure 1C), making this tissue an attractive substrate for high-

content profiling. Gonad architecture was analyzed in a strain

co-expressing fluorescent markers that target to the plasma

membrane (GFP fusion that binds PI4,5P2) and chromosomes

(mCherry-histone H2B). Hermaphrodites were soaked in dsRNA

against a target gene for 24hrbeginningat the late L4 larval stage,

when thegonadhas almost achieved its full complement of nuclei

(Kimble and Crittenden, 2005). After 48 hr recovery, gonad archi-

tecture was assessed in triplicate by anesthetizing worms and

imaging one gonad per worm.

Binary phenotypic profiles were generated by scoring the set

of 3 image stacks per target gene for 94 possible defects. The

movie set for each gene was inspected for each of the 94 defects

(Figure 1D; for a complete list with examples see Table S1),

assigning a ‘‘0’’ when the defect was absent and a ‘‘1’’ when

the defect was present in at least 2 of the 3 movies. All image

stacks were analyzed by the same pair of individuals, who

viewed and scored them together; image stacks were indexed

by RNA number, making their analysis blind to gene identity. In

the 24 cases where the three movies were not consistent, the

experiment was repeated (see Figure S1 available online,

Extended Experimental Procedures, and Table S6 for details

on screen design and scoring methods).

Generation of a Benchmark for Constructing Gene
Networks Based on Gonad Architecture Phenotypes
Initial attempts using the raw parameter dataset for automated

clustering broadly grouped genes, but failed to partition them
Cell 145, 470–482, April 29, 2011 ª2011 Elsevier Inc. 471
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Figure 1. Phenotypic Profiling Using aHigh-

Content Assay Based on the Architecture of

a Complex Tissue

(A) Breakdown of the 554 genes in the sterile

collection.

(B) Screen flow chart.

(C) The C. elegans gonad is a complex dynamic

tissue whose architecture depends on a broad

spectrum of interacting cellular processes (blue

text on the schematic). Spinning disc confocal

microscopy was used to collect an 80 plane two-

color z-series of each gonad. The imaged region is

indicated (red dashed box) and a sample central

z-section from a control gonad is shown.

(D) Six sample defects are illustrated by pairing the

numbered boxed regions from the control gonad in

(C) with the corresponding regions from gonads

with the indicated defects.

(E) Central plane images from two gene knock-

downs in three phenotypic classes. Knockdowns

in Class B2 (left column), which contains chaper-

onin complex subunits, led to rounded compart-

ments and nuclei that fell out of their compart-

ments (yellow arrowheads). Knockdowns in Class

F3 (middle column), which contains genes impli-

cated in Rho GTPase signaling, led to ‘‘tubulated’’

gonads with clustered nuclei. Knockdowns in

Class C2 (right column), which contains cell cycle

regulators, led to gonads with few compartments/

oocytes. Bars represent 10 mm. See also Fig-

ure S1, Table S1, and Table S2.
at a resolution similar to what could be achieved through blinded

manual classification by an experienced investigator. To develop

a better computational method, we began by manually partition-

ing the genes into classes to generate a reference that we could

use to evaluate computational methods for network construc-

tion. Manual partitioning placed the 554 sterile genes into 102

phenotypic classes (Table S2 contains a description, sample

image, and gene list for each class). For organizational purposes,

the 102 classes were grouped into 29 broad categories (labeled

A-Z, AA, AB, and AC) that each contain classes sharing one or

more prominent defects. Movies and class designations can

be accessed via the Phenobank website (http://worm.mpi-cbg.

de/phenobank_gonad).

Themanually definedphenotypic classes contained character-

ized genes with common annotated molecular functions (Fig-

ure 1E), indicating that similar gonad architecture phenotypes

reflect similar molecular functions. Manual partitioning placed

106 of the 116 uncharacterized genes into phenotypic classes

containing characterized genes, leading to predictions for their
472 Cell 145, 470–482, April 29, 2011 ª2011 Elsevier Inc.
functions. Prior to using the manually

defined classes as a benchmark to opti-

mize computational methods for network

analysis, we validated the functional

predictions arising from our classification

by following up on 8 uncharacterized

genes in 5 classes.

The first class (E2) predicted a role for

T09E8.1 in the microtubule cytoskeleton
(Figure 2A). Unlike other class E2 genes, partial T09E8.1 inhibition

did not lead to defects in the early embryonic cell divisions (not

shown). In dividing cells, the microtubule cytoskeleton is orga-

nized by centrosomes, whereas the gonad is dominated by

non-centrosomal microtubule arrays (Zhou et al., 2009). Thus,

we hypothesized that T09E8.1 is specifically required for non-

centrosomal microtubule array formation. Hypodermal cells,

born late in embryogenesis, also have non-centrosomal microtu-

bule arrays that function in nuclear positioning (Fridolfsson and

Starr, 2010). Partial T09E8.1 inhibition in the hypodermis led to

defects in nuclear positioning (Figure 2B), as well as a �3-fold

reduction in the number and an increase in the length of the

GFP-EBP-1 ‘‘comets’’ that mark growing microtubule ends (Fig-

ure 2C). We conclude that T09E8.1, which we name noca-1 (for

non-centrosomal array), plays an important role in the organiza-

tion of the noncentrosomal microtubule arrays in the gonad and

hypodermis.

The second class (G1) predicted a role for F54D12.5 and DAF-

21, an hsp90-family chaperone, in the MAPK signaling pathway

http://worm.mpi-cbg.de/phenobank_gonad
http://worm.mpi-cbg.de/phenobank_gonad
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Figure 2. Validation of Manual Classification I

(A) List of the genes in Class E2. Schematic and central plane images illustrate the class phenotype.

(B) Nuclei are in the dorsal cords of T09E8.1(RNAi) (yellow arrowheads), but not control, L1 worms (insets 2.43), reflecting a hypodermal cell nuclear migration

defect. Table shows quantification of the nuclear migration defect. The effects of simultaneous inhibition of the dynein-regulatory proteins BICD-1 and NUD-2

quantified from the dataset in Fridolfsson et al. (2010) are shown for comparison.

(C) The effect of T09E8.1 knockdown on microtubule arrays in the hypodermis (schematic) was monitored by timelapse imaging of an EB1-GFP fusion

(Fridolfsson and Starr, 2010). Bar graphs show the mean length (left) and number (right) of EB1-GFP comets. Error bars represent the SE.

(D) Class G1 contains three characterized genes implicated in MAPK signaling (gray), 1 characterized gene not previously implicated in MAPK signaling (orange),

and 1 uncharacterized gene (purple). Schematic and central plane images illustrate the class phenotype.

(E) Partial RNAi of daf-21, or GFP as a control, was performed in the presence or absence of a weakmpk-1 loss-of-function mutation (ga111). Gonads were fixed

and stained for chromosomes (DAPI, green), the plasma membrane (SYN-4 and PTC-1, red), and activated MPK-1 (Phospho-MPK-1, right panels). All analysis

was performed in the rrf-1(pk1417) background in which RNAi is effective in the gonad, but not in the surrounding somatic cells.

(F) Quantification of phenotypes resulting from partial RNAi of daf-21 or F54D12.5 in thempk-1(ga111) background (see Table S3). *Percentages do not include

the 21% of germlines that showed a severe MPK-1 ‘‘null’’ phenotype.

(G) Schematic places DAF-21 and F54D12.5 in the MAPK signaling pathway.

Error bars are the SE. Bars, 10 mm. See also Figure S2, Table S2 and Table S3.
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(Figure 2D). We tested these predictions using a genetic

approach. Worms homozygous for the reduction-of-function

allele mpk-1(ga111) exhibit normal gonad morphology, even

though phosphorylated MPK-1 levels, a readout for pathway

activity, are reduced compared to controls (Figures 2E and 2F;

Lee et al., 2007). Partial knockdown of daf-21 or F54D12.5, under

conditions that did not result in a morphological phenotype in

control worms, led to a strong MAPK knockdown phenotype in

the mpk-1(ga111) background (Figures 2E and 2F; Figure S2,

Table S3). RNAi of daf-21 reduced phosphorylatedMPK-1 levels

in control and let-60 gain-of-function worms (Figures 2E and 2F;

Table S3), indicating that DAF-21 acts at the level of or down-

stream of LET-60/Ras in the MAPK pathway (Figure 2G).

F54D12.5 RNAi did not reduce phosphorylated MPK-1 levels,

and F54D12.5 contains 2potentialMPK-1 docking sites suggest-

ing that it is an MPK-1 substrate (Figure 2G). We conclude that

DAF-21 and F54D12.5 function at different points in the MAPK

signaling pathway and name F54D12.5, eom-1, for enhancer of

mpk-1(ga111).

The third class (S2) predicted roles for three uncharacterized

proteins in the anaphase-promoting complex/cyclosome

(APC/C; Figure 3A). Immuno-affinity purification of one uncharac-

terizedgeneproduct,K10D2.4, fromC. elegansextracts followed

by mass spectrometry recovered seven APC components (Fig-

ure 3B). The product of another uncharacterized Class S2 gene,

C09H10.7, was also recovered—indicating that both K10D2.4

and C09H10.7 are APC/C subunits. K10D2.4was recently identi-

fied as a metazoan-specific component of the APC/C (Hubner

et al., 2010; Hutchins et al., 2010; Kops et al., 2010) and the

gene was named emb-1/apc-16. We name C09H10.7, apc-17.

The fourth class (F2) predicted a role for the BTB-domain con-

taining protein C08C3.4 in cortical remodeling/cytokinesis

(Figure 3C). A GFP fusion with C08C3.4 localized to the

contractile ring at the tip of the cleavage furrow in dividing

embryos (Figure 3D), and embryos partially depleted of

C08C3.4 exhibited cytokinesis defects (Figure 3E). We conclude

that C08C3.4 is required for cortical remodeling in the gonad and

cytokinesis in embryos and name the gene cyk-7.

The fifth class (I2) phenotype included debris labeled with the

plasma membrane probe, suggesting a role in membrane traf-

ficking (Figure 3F). We tested for a trafficking function by imaging

compartment boundaries in a strain co-expressing a mCherry

labeled plasma membrane probe and a GFP fusion with SNB-

1, a SNARE trafficked through the endomembrane system and

delivered to the plasma membrane (Figure 3G). Compartment

boundaries in control worms have SNB-1-GFP and the plasma

membrane probe and are yellow. Trafficking defects prevent

SNB-1-GFP from reaching the plasma membrane, leading to

red compartment boundaries. 8 of the 15 Class I2 genes,

including F27C8.6 and T01B7.6, exhibited defects in the SNB-

1 assay (Figure 3G). We name F27C8.6 and T01B7.6 trcs-1

and trcs-2, respectively, for (transport to the cell surface).

The follow up work on these five classes demonstrates that

gonad architecture has sufficient resolution to functionally clas-

sify genes across a broad spectrum of essential cellular func-

tions. It also validates the manual classification, establishing it

as a benchmark for evaluating computational methods for

network construction.
474 Cell 145, 470–482, April 29, 2011 ª2011 Elsevier Inc.
Development of a Network Context-Dependent
Method to Evaluate the Significance of Functional
Links Between Genes Based on High-Content
Phenotypic Profiles
Our initial efforts using automated clustering were unable to

partition genes at a resolution comparable to what could be

achieved by an experienced investigator. To circumvent this limi-

tation, we used the manually-defined classes as a tool to

develop a robust computational method for constructing gene

networks based on high-content parameter profiles. We first

compared the phenotypic profiles by calculating the Pearson’s

Correlation Coefficient (PCC) for each pair of genes. The result-

ing network was visualized using N-Browse, an interactive Java-

based tool (Kao and Gunsalus, 2008), to display connections

between genes whose profiles were correlated with a PCC

greater than or equal to a specified threshold (Figures 4A and

4B; dark blue lines connecting gray gene nodes). To assess

the effectiveness of this approach, we circled gene clusters

that corresponded to our manually-defined classes. This

approach revealed that the optimal PCC threshold for viewing

functionally relevant connections (red outlined boxes in Fig-

ure 4B) varied substantially between different network neighbor-

hoods. This variability was due to the varying nature of the

profiled phenotypes and the extent to which they are captured

by the parameter set, the extent to which scored parameters

are related versus independent, and the fact that profiles with

more features often exhibit more variance. Viewing the entire

network at a single PCC threshold is not possible because for

some regions the threshold is too low and the view is cluttered

with non-specific connections (Figure 4B, images above the

red boxed images), and for other regions the threshold is too

high, yielding an empty network in which many meaningful

connections are absent (Figure 4B, images below the red boxed

images).

To circumvent the limitations of PCC-based analysis, we

developed a measure that ranks the significance of functional

links between genes based on network context. For each pair

of genes A and B, we assigned a Connection Specificity Index

(CSI) by: (1) calculating the PCC for the connections between

A and B and each of the other genes in the dataset, (2) counting

the number of genes connected to A or B with PCC R PCCAB -

0.05 (i.e., at a level comparable to or better than the correlation

between A and B, correlations with a PCC up to 0.05 less than

PCCAB were considered similar—this offset was determined

empirically); (3) dividing this number by the total number of genes

in the screen (554); and (4) subtracting the result from 1.0

(Figure 4C). The CSI is equivalent to the fraction of genes in the

dataset whose profiles are less similar to those of A and B than

the profile of A is to the profile of B. For example, a CSI of 0.97

means that the similarity between A and B is highly specific:

only �3% of gene knockdowns have profiles with comparable

or higher similarity to either A or B. Since the CSI scales uniformly

with functional significance across the entire network, connec-

tions of a similar level of significance can simultaneously be dis-

played at a single CSI threshold (Figure 4D).

We evaluated the performance of CSI and PCC threshold

networks by comparing the ability of an automated

clustering algorithm (MINE, Module Identification in NEtworks;
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Figure 3. Validation of Manual Classification II

(A) List of the genes in Class S2. Schematic and central plane images of gonads (left) and adjacent embryos (right) illustrate the class phenotype.

(B) List of relevant proteins identified by mass spectrometry in an immuno-affinity purification of K10D2.4 from worm extracts, along with percent coverage. Proteins

encodedby theuncharacterizedClassS2genes (pink) are listed, alongwithAPCcomponents inClassS2 (gray) andadditional APCcomponents not in the screen (black).

(C) List of the genes in Class F2. Schematic and central plane images illustrate the class phenotype.

(D) Embryo co-expressing GFP-C08C3.4 (green) and an mCherry tagged plasma membrane probe (red) during the first cell division.

(E) Central plane images of control and C08C3.4(RNAi) embryos expressing mCherry-histone H2B (green) and a GFP plasma membrane probe (red). Multiple

nuclei in each cell in the C08C3.4(RNAi) embryo are due to cytokinesis failure.

(F) Schematic and central plane images illustrate the Class I2 phenotype, which includes punctate debris containing the plasma membrane probe (arrow in

schematic).

(G) Schematic of the trafficking assay. List of Class I2 genes with defects in the SNB-1-GFP trafficking assay. Images of the assay for 1 characterized and 2

uncharacterized Class I2 genes. Bars represent 10 mm in (A)–(F) and 5 mm in (G). See also Table S2.
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Figure 4. Constructing Gene Networks Using the Connection Specificity Index Instead of the PCC Reduces Connection Noise and Allows

Connections of Similar Functional Significance to Be Viewed Across the Entire Network at a Uniform Threshold

(A) Flowchart of the steps used to construct the gene networks in (B).

(B) Gene networks were constructed by displaying connections (dark blue lines) between genes whose knockdown profiles were correlated with a PCCR three

specified thresholds (0.46, top; 0.60, middle; 0.70, bottom). Each column shows a network region, labeled based on the primary function of the genes in that

region. To compare the computational network to the manually-defined phenotypic classes, gene groups from manually-assigned classes were circled and

labeled. The optimal PCC threshold at which significant connections were displayed and non-specific connections were filtered out (red boxes) was different for

different network regions.

(C) Method used to calculate the CSI.

(D) Gene network showing the same regions in (B) constructed by displaying connections (light blue lines) with a CSI R 0.97.

(E) Bar graph showing the number of connections in gene networks constructed using PCC or CSI thresholds of 0.55 or 0.96, respectively. These thresholds were

chosen because they are the highest thresholds that retain most of the genes in the network; genes drop out of the network when they no longer make any

connections with a PCC/CSI that exceeds the specified threshold.

(F) Bar graph showing the percent of the 49 manually-defined phenotypic classes containing 4 or more genes identified by an automated clustering algorithm

(MINE) in networks constructed using PCC or CSI thresholds of 0.55 or 0.96, respectively.

(G) Heatmap dendograms of the sterile gene set constructed based on the PCC or the CSI. See also Figure S3 and Table S4.
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Rhrissorrakrai and Gunsalus, in press) to identify gene clusters

corresponding to our manually-defined classes. This analysis

revealed that over the useful range of the two parameters,

networks generated using CSI thresholds have �3-fold fewer

connections than comparable PCC networks; this noise reduc-

tion translates into a substantial improvement in the ability of

an automated algorithm to identify functionally relevant gene

clusters (Figures 4E and 4F; Figure S3). Approximately half of

the manually-defined classes containing 4 or more genes could

be identified by automated clustering in a network constructed

using the single CSI threshold of 0.96, whereas only 14% could

be identified in a comparable PCC network (Figure 4F). When

MINE was allowed to search networks spanning a range of CSI

thresholds (0.90 to 0.99), clusters corresponding to �90% of

the manually-defined classes could be identified, compared to

65% for networks spanning a range of PCC thresholds (0.5-1).

Heat map dendograms also revealed more sharply defined clus-

ters when using the CSI, indicating that the CSI increases

network clarity (Figure 4G; Table S4).

We conclude that constructing networks using CSI thresholds

circumvents the variability in the significance of a strict correla-

tion measure in different network regions that arises due to the

complexity of high-content screening parameters. Using the

CSI instead of the PCC reduces connection noise and allows

connections of a similar functional significance to be viewed

across the entire network at a single threshold.

Varying the CSI Threshold Reveals Functional
Modularity in the Gene Network at Different
Levels of Resolution
The CSI-based network representation allows exploration of

functional modularity at different levels of resolution. This point

is illustrated by the region of the gene network involved in

protein production (Figure 5A): a relatively low threshold CSI

of 0.90 connects the entire set of genes involved in protein

translation, mRNA splicing, and protein folding in a dense

meshwork. An intermediate CSI threshold of 0.93 results in

a sparser network of more specific connections that defines

smaller gene groups. At a high CSI threshold of 0.97, the chap-

eronins, tRNA synthetases, translation initiation/elongation

factors, small ribosome subunits, large ribosome subunits,

and splicing factors are resolved into separate clusters. Thus,

dialing the CSI up or down reveals functional relationships at

different levels of resolution. The automated clusters identified

by MINE at three different CSI thresholds are provided in the

supplement (Table S5; note that genes can be in multiple

clusters).

We assessed the resolution limit of the gonad architecture

assay using the region of the network representing genes

involved in protein degradation (Figure 5B, Figure S4). Above

the very high CSI threshold of 0.99, the connections that re-

mained linked genes within specific proteasome subcomplexes

(the Lid, the core b-ring, the core a-ring or the 19S ATPase

base; Figure 5B). We conclude that phenotypic profiling based

on complex tissue architecture, coupled with automated

construction of CSI-based networks from parameter profiles,

is capable of correctly assigning very fine distinctions in protein

function.
CSI-Enabled Integration of High-Content Data Sets
Generates a Global View of the C. elegans Essential
Gene Network
Together, the gonad architecture (554 genes) and time-lapse

embryo filming (661 genes) screens provide high-content profiles

for 885 essential genes (330 were profiled in both screens). The

CSI is ideally suited for integrating these datasets because it filters

out low specificity phenotypic links, leading to a network that

combines only the significant relationships identified by the two

screens. We binarized the phenotypic signatures in the embryo

timelapse screen, which were based on scoring for 45 possible

defects (Sönnichsen et al., 2005), calculated a CSI for each gene

pair, and simultaneously displayed both data sets in N-Browse to

create an integrated network. The merged network, or network

regions centered on genes of interest, can be viewed at any CSI

threshold in N-Browse (instructions and a demo video describing

how to use N-Browse can be accessed at http://worm.mpi-cbg.

de/phenobank_gonad/nbrowse). At a CSI threshold of 0.96, the

integrated network has 3382 high significance connections linking

818genes (Figures6A–6C).Thecombinedviewprovides functional

information for�90%of the genes required for embryo production

or the first two embryonic divisions. Despite the presence of 330

genes in common, the relationships identified by the two datasets

were highly orthogonal—only 23 of the total 3382 phenotypic links

are shared (Figure 6A). This lack of overlap is explained by the

majorityof the330commongenes failing tomakehigh-significance

connections in the embryo time-lapse screen due to sterility onset

(Figure S5). Overall, the CSI-based network integrates information

acquired in the biologically distinct contexts of the gonad and

embryo to provideamulti-layered viewof the function of 818genes

required for essential cellular processes in amulticellular organism.

DISCUSSION

High-content screening is the primary method for mapping func-

tional gene networks in animal cells (Collins et al., 2009; Conrad

and Gerlich, 2010; Gunsalus, 2008). A number of high-content

screens have classified genes based on cell morphology

following gene knockdown (examples include Bakal et al.,

2007; Echard et al., 2004; Eggert et al., 2004; Goshima et al.,

2007; Liu et al., 2009; Neumann et al., 2010; Piano et al., 2002;

Sönnichsen et al., 2005). While successful in identifying genes

that contribute to cell division andmorphology, the ability of these

screens to assess protein function across a breadth of cellular

processes falls far short of what has been attained using genetic

interaction profiling in fungi. Screen resolution—the ability to

discriminate between different biological functions—depends

on the information content of the phenotypic assay; therefore,

one approach to enhance resolution has been time-lapse

imaging (Conrad and Gerlich, 2010). Here, we explored an alter-

native approach—analyzing the effects of gene knockdowns on

complex tissue architecture at a single timepoint in amulticellular

organism.WemonitoredC. elegans gonad architecture following

gene knockdown by scoring 94 phenotypic features. Our results

demonstrate that the biological complexity of the gonad trans-

lates into phenotypes that enable profiling across a wide spec-

trum of essential cellular processes at a resolution approaching

that of genetic interaction profiling in yeasts.
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A

B

Figure 5. Varying the CSI Threshold Reveals Functional Modularity in the Gene Network at Different Levels of Resolution

(A) The region of the gene network involved in protein production is shown using three different CSI thresholds to filter displayed connections. The gene clusters

apparent at each threshold are circled and gene groups from manually-defined classes are labeled.

(B) The region of the network involved in protein degradation is shown using the very high CSI threshold of 0.99. The connections that remain link components

within specific proteasome subcomplexes (illustrated schematically on the right).

See also Figure S4 and Table S5.
The Sterile Gene Collection: A Prominent Gap in the
Functional Genomic Analysis of theC. elegans Essential
Gene Set
Sequencing of theC. elegans genome and the discovery of RNAi

catalyzed efforts to systematically catalog the functions of its

predicted genes (Piano et al., 2006).C. elegans has�900 essen-

tial genes required for embryo production and/or events during

the first two embryonic divisions. A subset of these genes was
478 Cell 145, 470–482, April 29, 2011 ª2011 Elsevier Inc.
previously characterized by time-lapse imaging of early embryos

(Fraser et al., 2000; Gönczy et al., 2000; Piano et al., 2002;

Sönnichsen et al., 2005). However, sterility onset following

RNAi was a major complication that precluded in-depth charac-

terization of a large number of genes. Our efforts focused on

these 554 sterile genes, which we profiled by imaging gonad

architecture following RNAi knockdowns and generating

a parameterized description of the resulting phenotypes.
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Figure 6. The CSI Enables Integration of

High-Content Data Sets to Generate a Global

View of the Essential C. elegans Gene

Network

(A) Venn diagram showing the high significance

connections identified by the embryo-filming (Sön-

nichsen et al., 2005) and gonad architecture data.

(B) Venn diagram showing the genes that make at

least one high significance connection identified by

each dataset.

(C) Bird’s eye view of the integrated network

combining high-significance connections based on

the gonad (blue) and embryo (red) data. Insets (i-ii)

highlight regions where the gonad and embryo data

intersect (connections identified by both datasets

are purple).

See also Figure S5.
Our analysis generated functional predictions for 106of the116

uncharacterized sterile genes. These predictions span a variety

of cellular processes including membrane trafficking, glycosyla-

tion, fatty acid synthesis, cortical dynamics, chromosome struc-

ture/segregation, RNA splicing, mitochondrial function, microtu-

bule cytoskeleton, proteasome function, translation, MAPK

signaling, transcription, RNA binding, and the metaphase-

anaphase transition. We validated these predictions for 8 genes

that play important roles in the microtubule cytoskeleton, MAP

kinase signaling, themetaphase-anaphase transition, cortical re-

modeling/cytokinesis, and membrane trafficking. Although the

gonad was used as a ‘‘test tube’’ to functionally profile these

genes, subsequent work in early and later stage embryos indi-

cates that the majority of the essential genes in this collection

are broadly important. Of the 554 sterile genes,�60% have pre-

dicted homologs in higher organisms, and more than 50% of the

106 uncharacterized genes have a predicted homolog or

conserved domain. Thus, in addition to filling a large gap in the

analysis of theC. elegans essential gene set, our findings provide

a starting point to address the functions of related genes in

humans.
Cell 145, 470
High-Resolution Phenotypic Profiling
Based on the Morphology
of a Complex Tissue
While the original motivation for our screen

was to profile the sterile gene set, a fortu-

itous byproduct was the realization that

a complex tissue, whose structure

depends on the dynamic coordination of

a broad spectrum of cellular processes, is

an ideal substrate for phenotypic profiling.

A major finding of our work is that profiles

based on complex tissue architecture

acquired at a single time point following

gene knockdown have greater information

depth than profiles derived from timelapse

imaging of the first two divisions of the

early embryo (a single cell). For example,

as shown in Figure 5, the gonad data parti-

tions the set of genes involved in protein
production into 15 different classes (chaperones, ribosome

components, tRNA synthetases, proteins involved in protein

folding, splicing components etc.) whereas none of these

distinctions could be made based on embryo filming data.

This high level of resolution generally holds throughout the

dataset.

We note that the means of inferring function in a single point

morphology assay is distinct from that used in the embryo-film-

ing screen. In the embryo screen, gene function was inferred

directly from phenotype. For example, defects in spindle

assembly, chromosome segregation, or polarity establishment

led to assignment to classes implicated in the corresponding

processes (Sönnichsen et al., 2005). By contrast, the link

between cataloged phenotypic features in the gonad architec-

ture assay and gene function is not direct—we do not know

why knockdown of genes with specific functions lead to

a specific spectrum of phenotypic features. Instead, protein

function is inferred by comparing the profile of phenotypic

features to those of other genes in the dataset, a process

conceptually analogous to how function is inferred from genetic

interaction profiles in budding yeast.
–482, April 29, 2011 ª2011 Elsevier Inc. 479



The presence of proteasome components in our dataset

offered an opportunity to compare the resolution of our approach

to genetic interaction profiling in yeast. The proteasome is a 2.5-

MDa macro-molecular machine that contains over 30 different

subunits organized into a 20S core complex, composed of

a and b rings, and a 19S regulatory particle, containing base

and lid sub-complexes (Bochtler et al., 1999). In yeast, distinct

genetic interaction profiles were obtained for the subunits of the

four proteasome sub-complexes using a sensitive competitive

growth assay (Breslow et al., 2008). At a CSIR 0.99 (a high-strin-

gency filter), the connections that remained were between

subunits of specific proteasome subcomplexes (a ring, b ring,

lid and base; Figure 5B). This observation indicates phenotypic

profiles basedongonadmorphologyprovide resolution sufficient

to group subunits of specific proteasome subcomplexes.

At the core of our dataset are profiles composed of parameters

visually scoredbyexperienced investigators rather than acquired

through automated image analysis. Given the complexity of the

substrate—a 3 dimensional tissue in a living organism that can

be variably positioned in the worm—and the large spectrum of

knockdown phenotypes that can entirely change the properties

of the structure (gonad size, shape, position, compartment and

nuclei number and morphology) automated parameter scoring

would have been exceedingly difficult. However, the exact prop-

erties that make automated analysis difficult—the varied and

dramatic effects that geneknockdownscanhaveongonadarchi-

tecture—are also the properties that give the assay its profiling

power. Although manual parameter scoring could introduce

somebias, thiswasminimizedbyperforming the analysis blinded

to gene identity and the by fact that the individual parameters

were scored by investigators who were largely oblivious to the

larger patterns that would ultimately emerge.

A Robust Computational Method for Constructing Gene
Networks From High-Content Screening Data
By evaluating computational methods for network construction

using a validated manual classification of a rich phenotypic data-

set, we were able to devise a robust computational method for

constructing gene networks from high-content phenotypic

profiles. This method overcomes two challenges encountered

in network analysis of high-content datasets. The first challenge

is that the level of profile correlation that is significant varies in

different network regions due to the varying nature of the profiled

phenotypes and the extent to which they are captured by the

parameter set. The second challenge is that commonly encoun-

tered (and thus less informative)phenotypescangeneratea ‘‘hair-

ball’’ of connections that obscuresmeaningful functional links. At

the center of the method we developed to overcome these chal-

lenges is a simple metric—the CSI, which is a network context-

dependentmeasure that ranks the significance of functional links

between genes. Compared to the Pearson’s Correlation Coeffi-

cient, constructing networks based on the CSI reduces non-

specific connection noise, improves network clarity, and allows

connections of a similar functional significance to be simulta-

neously viewed across the entire network at a single threshold.

Ranking connection significance allows exploration of the

gene network at different levels of functional resolution and inte-

gration of high-content screening data from different sources.
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Wedemonstrate the usefulness of the CSI by using it to integrate

the high-content data from our gonad architecture screen with

that from the prior embryo-filming screen, to generate an inte-

grated network that provides a multi-layered view of 818 genes

in the C. elegans essential gene set. The phenotypic profiles in

these datasets are composed of parameters that were visually

scored rather thanmeasured through automated image analysis.

However, constructing networks based on phenotypic profiles

faces the same challenges, regardless of whether parameters

are scored through manual or automated means. Consequently,

we anticipate that the CSI-based method described here will be

of equal utility in analyzing and integrating datasets composed of

parameters acquired through automated analysis.

EXPERIMENTAL PROCEDURES

C. elegans Strains

Strains are listed in Table S7. The strains OD95, UD299, DP38, OD70,

MSN142, NL2098, and BS3623 were previously described (Arur et al., 2009;

Essex et al., 2009, Fridolfsson and Star, 2010; Kachur et al., 2008; Maduro

and Pilgrim, 1995; Shi et al., 2010; Sijen et al., 2001). OD447 was generated

by using a PDS-1000/He Biolistic Particle Delivery System (Bio-Rad Laborato-

ries; Praitis et al., 2001) to bombard a construct containing the C08C3.4

genomic locus cloned into the SpeI site of pIC26 (Cheeseman et al., 2004)

into DP38. OD449 was generated by mating OD447 with OD70.

RNA Production

Templates for dsRNA production were generated by using primers with tails

containing the T3 and T7 promoters to amplify to amplify a 500-1000 bp region

of the corresponding gene from genomic DNA. When possible, the oligo pairs

used by Sönnichsen et al. (2005) were chosen. New oligos were designed for

genes not in the Sönnichsen screen and when the Sönnichsen oligo pairs

amplified introns or regions smaller or larger than 500-1000 bp (oligos are

listed in Table S2). PCR reactionswere cleaned (PerfectPrep 96 kit; Eppendorf)

and used as templates for T3 and T7 transcription reactions (Megascript T3

and T7 kits, Ambion). Transcription reactions were mixed, cleaned (Mega-

Clear96 kit, Ambion), and annealed by adding 3x Soaking buffer (32.7 mM

Na2HPO4, 16.5 mM KH2PO4, 6.3 mM NaCl, 14.1 mM NH4Cl) to a final

concentration of 1X and incubating the reactions at 68�C for 10 min followed

by 37�C for 30 min.

RNA Interference

Larval (L4 stage) worms from the strain OD95 were rinsed with M9 and soaked

in 5 ml of dsRNA (supplemented with 0.5 ml of a 50/50 mixture of 63 mM sper-

midine and 1.1% gelatin) for 24 hr at 20�C inside a humid chamber. Worms

were transferred to NGM plates seeded with OP50 E. coli and allowed to

recover at 20�C for 48 hr prior to imaging.

Live Imaging

Six worms were anesthetized in a fresh mixture of 1 mg/ml Tricane (ethyl

3-aminobenzoate methanesulfonate salt) and 0.1 mg/ml of tetramisole hydro-

chloride (TMHC) dissolved in M9 for 15-30 min before transferring them to an

agarose pad under a coverslip for imaging. Gonads were imaged by collecting

an 803 0.5 mm z-series including DIC, GFP and RFP images for every z-plane.

Microscopy was performed with a spinning disk confocal mounted on a Nikon

TE2000-E inverted microscope equipped with a 60x 1.4 NA PlanApochromat

lens, a krypton-argon 2.5 W water-cooled laser (Spectra-Physics, Mountain

View, CA) and a Hamamatsu Orca ER CCD camera. Acquisition parameters,

shutters, and focus were controlled by MetaMorph software (Molecular

Devices, Downington, PA).

Sterility Assessment

At the time when the other worms in the cohort were anesthetized and imaged,

3 worms were moved to a fresh plate. After 24 hr at 20�C, the number of



embryos and L1 progeny on the plate was counted. A gene was ‘‘sterile’’ if no

embryos or L1 larvae were observed, ‘‘partially sterile’’ if < 50 embryos/L1

wormswere present, and ‘‘wild-type’’ if > 50 embryos/L1 wormswere present.

After an additional 24 hr, we assessed whether the knockdown resulted in

embryonic lethality. If > 50 L1-L2 larvae were present, they were considered

‘‘viable,’’ if < 50 L1-L2 larvae were present and there were > 5 dead embryos,

it was considered ‘‘embryonic lethal.’’

Antibody Production

Antibodies against K10D2.4 were generated by using the oligos

cgcgcgggatccgctttgatgtacccattcca and gcgcgcgaattctcaaggatttgcaggcatattt

to amplify a region encoding amino acids 2-81 from a cDNA library. The

product was digested with BamHI/EcoRI and cloned into pGEX6P-1 digested

with the same enzymes (GE Healthcare Life Sciences). The purified GST fusion

protein was outsourced for injection into rabbits (Covance). Antibodies were

affinity purified by binding to columns of the same antigen after removal of

the GST tag as described previously (Desai et al., 2003).

Immunoprecipitation and Mass Spectrometry

K10D2.4 was immunoprecipiated from extracts prepared from frozen worm

pellets (Desai et al., 2003) andmass spectrometry was performed (Cheeseman

et al., 2004) as described, using the most recent version of the predicted

C. elegans proteins (Wormprep111).

Hypodermal Cell Experiments, MAP Kinase Experiments, and

Membrane Trafficking Assay

For Figure 2C, embryos produced by adult hermaphrodites from the strain

UD299 were imaged as described (Fridolfson and Starr, 2010), 20 hr after

injection of dsRNA against T09E8.1 into their gonad. Nuclear migration was

scored in L1 larvae using DIC optics as described (Starr et al., 2001). The

attenuated RNAi, gonad dissection, immunofluorescence, and gonad analysis

in Figure 2E and F (Arur et al., 2009) and the GFP-SNB-1 trafficking assay

(Shi et al., 2010) were performed as described.

Phenobank and N-Browse

Movies can be accessed via the Phenobankwebsite (http://worm.mpi-cbg.de/

phenobank_gonad) or through RNAiDB (http://www.rnai.org). Written instruc-

tions and a demo video explaining how to search Phenobank can be found at

http://worm.mpi-cbg.de/phenobank_gonad/project. Written instructions and

a demo video describing how to visualize the gene network in N-Browse2

can be found at http://worm.mpi-cbg.de/phenobank_gonad/nbrowse. As

described in the instructions, gonad and embryo data can be viewed in

N-Browse2 by entering the URL http://gnetbrowse.org/gonad.jnlp into your

browser and providing the password ‘‘phenotypes’’ at the prompt. Additional

information about N-Browse, including system requirements and tutorials, can

be found at http://www.gnetbrowse.org.

Automated clustering using MINE

MINE (Module Identification in Networks) is a graph clustering algorithm that

shows comparable or better performance compared with similar algorithms

in identifying functional modules in dense interaction networks (K. Rhrissorrak-

rai and K.C. Gunsalus, in press). MINE, which is similar to MCODE (Bader and

Hogue, 2003) but uses a modified weighting scheme and takes into account

network modularity, is available as a Cytoscape plug-in from http://www.

cytoscape.org or as a Perl package (upon request from the authors).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and seven tables and can be found with this article online at doi:10.

1016/j.cell.2011.03.037.
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Sönnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm,M.,

Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Full-genome

RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434,

462–469.

Starr, D.A., Hermann, G.J., Malone, C.J., Fixsen,W., Priess, J.R., Horvitz, H.R.,

and Han, M. (2001). unc-83 encodes a novel component of the nuclear enve-

lope and is essential for proper nuclear migration. Development 128, 5039–

5050.

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B.,

Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N.,

et al. (2003). The COG database: an updated version includes eukaryotes.

BMC Bioinformatics 4, 41.

Wilmes, G.M., Bergkessel, M., Bandyopadhyay, S., Shales, M., Braberg, H.,

Cagney, G., Collins, S.R., Whitworth, G.B., Kress, T.L., Weissman, J.S.,

et al. (2008). A genetic interaction map of RNA-processing factors reveals links

between Sem1/Dss1-containing complexes and mRNA export and splicing.

Mol. Cell 32, 735–746.

Zhou, K., Rolls, M.M., Hall, D.H., Malone, C.J., and Hanna-Rose, W. (2009). A

ZYG-12-dynein interaction at the nuclear envelope defines cytoskeletal archi-

tecture in the C. elegans gonad. J. Cell Biol. 186, 229–241.

Zipperlen, P., Fraser, A.G., Kamath, R.S., Martinez-Campos, M., and Ahringer,

J. (2001). Roles for 147 embryonic lethal genes on C.elegans chromosome I

identified by RNA interference and video microscopy. EMBO J. 20, 3984–

3992.

http://www.wormbook.org
http://www.wormbook.org
http://www.wormbook.org

	A High-Resolution C. elegans Essential Gene Network Based on Phenotypic Profiling of a Complex Tissue
	Introduction
	Results
	Phenotypic Profiling Based on The Morphology of a Complex Tissue: The C. elegans Gonad
	Generation of a Benchmark for Constructing Gene Networks Based on Gonad Architecture Phenotypes
	Development of a Network Context-Dependent Method to Evaluate the Significance of Functional Links Between Genes Based on H ...
	Varying the CSI Threshold Reveals Functional Modularity in the Gene Network at Different Levels of Resolution
	CSI-Enabled Integration of High-Content Data Sets Generates a Global View of the C. elegans Essential Gene Network

	Discussion
	The Sterile Gene Collection: A Prominent Gap in the Functional Genomic Analysis of the C. elegans Essential Gene Set
	High-Resolution Phenotypic Profiling Based on the Morphology of a Complex Tissue
	A Robust Computational Method for Constructing Gene Networks From High-Content Screening Data

	Experimental Procedures
	C. elegans Strains
	RNA Production
	RNA Interference
	Live Imaging
	Sterility Assessment
	Antibody Production
	Immunoprecipitation and Mass Spectrometry
	Hypodermal Cell Experiments, MAP Kinase Experiments, and Membrane Trafficking Assay
	Phenobank and N-Browse
	Automated clustering using MINE

	Supplemental Information
	Acknowledgments
	References




